scholarly journals Analysis of selected mineral and waste sorbents for the capture of elemental mercury from exhaust gases

Mineralogia ◽  
2020 ◽  
Vol 51 (1) ◽  
pp. 17-35
Author(s):  
Magdalena Wdowin ◽  
Mariusz Macherzyński ◽  
Rafał Panek ◽  
Mateusz Wałęka ◽  
Jerzy Górecki

Abstract Several mineralogically, chemically and texturally diverse minerals and waste materials were selected for the testing of elemental mercury capture in exhaust gas, namely tyre char resulting from the burning of pyrolytic rubber tyres, class C fly ash, mesoporous material type MCM-41 and glauconite. Each material’s mineralogical, chemical and textural characteristics were explored. In order to conduct experiments in conditions similar to those during the contact of sorbent with real coal exhaust fumes at a temperature of about 110-120°C, the experiments were carried out using a test device consisting of a furnace for burning powdered coals, a thermostatic cage for sorbent reactors and mercury gas analysers, which are able to measure and compare the effects of individual sorbents with exhaust gas. The study found that the best results for mercury sorption in the exhaust atmosphere were obtained for class C ash resulting from brown coal combustion.

Langmuir ◽  
2018 ◽  
Vol 34 (30) ◽  
pp. 8739-8749 ◽  
Author(s):  
Zequn Yang ◽  
Hailong Li ◽  
Shihao Feng ◽  
Pu Li ◽  
Chen Liao ◽  
...  

2020 ◽  
Vol 398 ◽  
pp. 125611 ◽  
Author(s):  
Qin Yang ◽  
Zequn Yang ◽  
Hailong Li ◽  
Jiexia Zhao ◽  
Jianping Yang ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 414
Author(s):  
Rana J. Kadhim ◽  
Faris H. Al-Ani ◽  
Qusay F. Alsalhy ◽  
Alberto Figoli

The aim of this work is the optimization of the operating conditions under which MCM-41-mesoporous material can be incorporated into polyethersulfone (PES)/MCM-41 membranes for nanofiltration (NF) applications. MCM-41 mesoporous material mixed matrix PES membranes have the potential to reduce membrane fouling by organic dye molecules. Process optimization and modeling aim to reduce wasted energy while maintaining high flow during the operation to handle the energy efficiency problems membranes often have. An optimization technique was applied to obtain optimum values for some key parameters in the process to produce a certain amount of flux above the desired values. Response surface methodology (RSM) and analysis of variance (ANOVA) were used as mathematical and statistical analyses to improve the performance of the process on a larger scale. This work investigated the influence of the operating parameters, such as the feed pH values (3–11), MCM-41 content (0–1 wt.%), and the feed dye concentration (10–100 ppm) for each of the two studied dyes, acid black 210 (AB-210) and rose bengal (RB), and their interactions on the PES membrane permeability. The results showed that the PES membrane had the best performance at 64.25 (L·m−2·h−1·bar-1) and 63.16 (L·m−2·h−1·bar-1) for the AB-210 and RB dyes, respectively. An MCM-41 content of nearly 0.8 wt.% in the casting solution, feed dye concentration of 10 ppm for the studied dyes, and feed pH of 3 for the RB dye was found to be the optimal parameters for eliciting the response. The pH had no significant influence on the response for the AB-210 dye, while the pH shows some minor effects on response with the RB dye, and the Pareto chart of the standardized effects on the permeation flux of both dyes using statistically significant at the 5% significance level support these results.


2021 ◽  
Vol 420 ◽  
pp. 129843
Author(s):  
Zifeng Luo ◽  
Ling You ◽  
Jiang Wu ◽  
Yubao Song ◽  
Siyuan Ren ◽  
...  

2003 ◽  
Vol 20 (2) ◽  
pp. 256-261 ◽  
Author(s):  
Sung Soo Park ◽  
Sang Joon Choe ◽  
Dong Ho Park

Silicon ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 289-294 ◽  
Author(s):  
José Arnaldo Santana Costa ◽  
Priscila Vedovello ◽  
Caio Marcio Paranhos

Sign in / Sign up

Export Citation Format

Share Document