scholarly journals Characterization of Optical and Electrical Properties of Transparent Conductive Boron-Doped Diamond thin Films Grown on Fused Silica

2014 ◽  
Vol 21 (4) ◽  
pp. 685-698 ◽  
Author(s):  
Robert Bogdanowicz

Abstract A conductive boron-doped diamond (BDD) grown on a fused silica/quartz has been investigated. Diamond thin films were deposited by the microwave plasma enhanced chemical vapor deposition (MW PECVD). The main parameters of the BDD synthesis, i.e. the methane admixture and the substrate temperature were investigated in detail. Preliminary studies of optical properties were performed to qualify an optimal CVD synthesis and film parameters for optical sensing applications. The SEM micro-images showed the homogenous, continuous and polycrystalline surface morphology; the mean grain size was within the range of 100-250 nm. The fabricated conductive boron-doped diamond thin films displayed the resistivity below 500 mOhm cm-1 and the transmittance over 50% in the VIS-NIR wavelength range. The studies of optical constants were performed using the spectroscopic ellipsometry for the wavelength range between 260 and 820 nm. A detailed error analysis of the ellipsometric system and optical modelling estimation has been provided. The refractive index values at the 550 nm wavelength were high and varied between 2.24 and 2.35 depending on the percentage content of methane and the temperature of deposition.

2016 ◽  
Vol 15 (4) ◽  
pp. 614-618 ◽  
Author(s):  
Hideyuki Watanabe ◽  
Hitoshi Umezawa ◽  
Toyofumi Ishikawa ◽  
Kazuki Kaneko ◽  
Shinichi Shikata ◽  
...  

1996 ◽  
Vol 423 ◽  
Author(s):  
S. Mirzakuchaki ◽  
H. Golestanian ◽  
E. J. Charlson ◽  
T. Stacy

AbstractAlthough many researchers have studied boron-doped diamond thin films in the past several years, there have been few reports on the effects of doping CVD-grown diamond films with phosphorous. For this work, polycrystalline diamond thin films were grown by hot filament chemical vapor deposition (HFCVD) on p-type silicon substrates. Phosphorous was introduced into the reaction chamber as an in situ dopant during the growth. The quality and orientation of the diamond thin films were monitored by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Current-voltage (I-V) data as a function of temperature for golddiamond film-silicon-aluminum structures were measured. The activation energy of the phosphorous dopants was calculated to be approximately 0.29 eV.


1991 ◽  
Vol 6 (6) ◽  
pp. 1278-1286 ◽  
Author(s):  
R. Ramesham ◽  
T. Roppel ◽  
C. Ellis ◽  
D.A. Jaworske ◽  
W. Baugh

Polycrystalline diamond thin films have been deposited on single crystal silicon substrates at low temperatures (⋚ 600 °C) using a mixture of hydrogen and methane gases by high pressure microwave plasma-assisted chemical vapor deposition. Low temperature deposition has been achieved by cooling the substrate holder with nitrogen gas. For deposition at reduced substrate temperature, it has been found that nucleation of diamond will not occur unless the methane/hydrogen ratio is increased significantly from its value at higher substrate temperature. Selective deposition of polycrystalline diamond thin films has been achieved at 600 °C. Decrease in the diamond particle size and growth rate and an increase in surface smoothness have been observed with decreasing substrate temperature during the growth of thin films. As-deposited films are identified by Raman spectroscopy, and the morphology is analyzed by scanning electron microscopy.


2010 ◽  
Vol 43 (37) ◽  
pp. 374019 ◽  
Author(s):  
B L Willems ◽  
G Zhang ◽  
J Vanacken ◽  
V V Moshchalkov ◽  
S D Janssens ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document