scholarly journals Enhancement of color quality and luminous flux for remote-phosphor LEDs with red-emitting CaMgSi2O6:Eu2+,Mn2+

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Guo-Feng Luo ◽  
Nguyen Thi Phuong Loan ◽  
Le Van Tho ◽  
Nguyen Doan Quoc Anh ◽  
Hsiao-Yi Lee

AbstractSiO2 particles and red-emitting CaMgSi2O6:Eu2+,Mn2+ phosphor have been added into a yellow phosphor compound YAG:Ce3+ to enhance the optical efficiency of white light LEDs whose average correlated color temperature (CCT) is in the range of 5600 K ÷ 8500 K. It was observed that altering CaMgSi2O6:Eu2+,Mn2+ concentration from 2 % to 30 % while maintaining 5 % of the SiO2 strongly influenced the color rendering index (CRI), color quality scale (CQS), and lumen efficiency of the compound. Besides, through the application of Monte Carlo simulation and Mie-scattering theory, it was possible to improve the optical properties by CaMgSi2O6:Eu2+,Mn2+ and SiO2 addition. The results provided a practical approach to achieve higher luminous efficiency and better color uniformity in remote-phosphor white LEDs (RP-WLEDs).

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
My Hanh Nguyen Thi ◽  
Phung Ton That ◽  
Nguyen Doan Quoc Anh ◽  
Tran Thanh Trang

Abstract The remote phosphor as a lighting structure has outstanding luminous efficiency compared to other options, such as conformal or in-cup. However, the lack of uniformity in distributed color has prevented remote phosphor from wider development. The answer to the chromatic performance enhancement that has been suggested by numerous researchers is the multi-layer configuration with two or three different types of chromatic phosphor. The research purpose is to select the best configuration for multi-chip white LEDs (WLEDs) to achieve optimal results in color quality scale (CQS), color rendering index (CRI), light output and color homogeneity. WLEDs mentioned in this paper have two distinct color temperatures, 6600 K and 7700 K. Experimental results show that the remote phosphor structure with three phosphor layers is superior in terms of color rendering, chromatic performance, and emitted light. The deviation of correlated color measured in this structure is also low, which means that the color uniformity is greatly enhanced in this multi-layer lighting structure. This result can be demonstrated by analyzing the scattering characteristics of the phosphoric layers using the Mie theory. The research findings have proven the effectiveness of the multi-phosphor configuration and can serve as a guideline to fabricate WLEDs with better performance.


2021 ◽  
Vol 10 (4) ◽  
pp. 1838-1845
Author(s):  
Phan Xuan Le ◽  
Le Tien

While the remote phosphor structure is not an appropriate solution for WLED color uniformity, it is more advantageous for the luminous output of WLED than the conformal phosphor or in-cup phosphor structure. Acknowledging the ability of the remote phosphor structure, many studies have been carried out to surmount the color quality disadvantage of this structure. A dual-layer remote phosphor configuration is proposed in this research paper to acquire better color quality for WLEDs through heightening the color rendering index (CRI) and the color quality scale (CQS). The color temperature of the WLED packages this study is 8500 K. By inserting a layer of green CaSO4:Ce3+,Mn2+ or red LiLaO2:Eu3+ phosphor on the yellow YAG:Ce3+ phosphor layer, the phosphor structure configuration can be constructed. Then, to get the best color quality, the concentration of added phosphor LiLaO2:Eu3+ would be changed. The findings showed the rise of CRI and CQS along with the LiLaO2:Eu3+, which implies the influence of LiLaO2:Eu3+ to the growth of red light components within WLEDs packages. The greater the concentration of LiLaO2:Eu3+ is, the more the CRI and CQS increase. Meanwhile, the luminous flux gains from the green phosphor CaSO4:Ce3+,Mn2+. Nevertheless, the luminous flux and color quality would decrease if the concentrations of both red LiLaO2:Eu3+ and green CaSO4:Ce3+,Mn2+ phosphors reach a certain corresponding level. Centered on the Mie-scattering theory and the law of Lambert-Beer, this result is illustrated. The findings in this research are vital references for manufacturing WLEDs with higher white light performance.


2018 ◽  
Vol 2 (1) ◽  
pp. 55
Author(s):  
Hoang Quang Minh Tran ◽  
Huu Khanh Nhan Nguyen ◽  
Hsiao-Yi Lee

In this paper, by mixing the red-emitting α-SrO·3B2O3:Sm2+ conversion phosphor to yellow-emitting YAG:Ce phosphor compound, an innovative recommendation for increasing optical performance of white LEDs (WLEDs) with remote packaging, which has an average correlated color temperature (CCT) of 700K and 8500K, is proposed and demonstrated. By varying α-SrO·3B2O3:Sm2+ concentration from 2% to 24 %, the obtained results indicated that color uniformity, color rendering index (CRI), color quality scale (CQS), and luminous flux could be improved significantly. The results demonstrated a prospective recommendation for manufacturing remote packaging phosphor WLEDs.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Author(s):  
Nguyen Thi Phuong Loan ◽  
Anh Tuan Le

The angular color uniformity (ACU) with the ability to evaluate chromatic performance of WLED has become an important target to achieve in producing higher-quality WLEDs. This paper studies the ACU enhancing effects of novel triple-phosphor configuration in lighting devices with remote phosphor structure. Moreover, the optical influences of remote phosphor structure with three phosphor layers (TL) on WLEDs properties are calculated and compared to the dual-layer (DL) one for reference. The experiments are applied to devices at 5 distinct correlated color temperature ranging from 5600-8500 K. The results presented that DL structure attains better color rendering index (CRI) than the TL one. Meanwhile, in terms of color quality scales (CQS), TL model shows higher values at all ACCTs, compared to the DL. Moreover, the luminous flux of DL configuration is lower than that of TL structure. In addition, the diversion of color temperature depicts as D-CCT in TL structure is much better than the value in DL structure, especially at high ACCT as 8500 K, which means TL is good for chromatic uniformity of high ACCTs WLEDs. These results proved that the triple-layer structure is superior and more effective to apply for acquiring the enhancement of WLEDs package.


2019 ◽  
Vol 3 (3) ◽  
pp. 464
Author(s):  
Hsiao-Yi Lee ◽  
Phan Xuan Le ◽  
Doan Quoc Anh Nguyen

In terms of luminous flux, the remote phosphor structure is better than conformal structure or in-cup phosphor structure, however, this structure often has inferior color quality compared to the others. As a result, many studies have been conducted to nd a solution to the drawback mentioned above. In this research, we are after the same goal using WLEDs structure with color temperature of 5600 K and come to the conclusion that dual-layer phosphor structure can improve the color rendering index (CRI) and the color quality scale (CQS). The concept of the research is to place red phosphor layer Mg2TiO4:Mn4+ on a yellow phosphor layer YAG:Ce3+ and locate the concentration of Mg2TiO4:Mn4+ that allows the color quality to reach the highest value. The result shows that Mg2TiO4:Mn4+ benets CRI and CQS, more specifically, the addition of Mg2TiO4:Mn4+ in WLEDs boosts the red light component, thus, enhancing CRI and CQS. However, it is demonstrated through the application of Mie-scattering theory and Lambert-Beer law that when the concentration of Mg2TiO4:Mn4+ exceed the limit, it can harm the luminous flux of WLEDs. The result of this research is a valuable contribution to improving the techniques of manufacturing better WLEDs with higher white light quality.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


2017 ◽  
Vol 35 (3) ◽  
pp. 618-625
Author(s):  
Tran Hoang Quang Minh ◽  
Nguyen Huu Khanh Nhan ◽  
Nguyen Doan Quoc Anh ◽  
Hsiao-Yi Lee

AbstractThis paper investigates a method for improving the lighting performance of white light-emitting diodes (WLEDs), packaged using two separating remote phosphor layers, yellow-emitting YAG:Ce phosphor layer and red-emitting α-SrO·3B2O3:Sm2+ phosphor layer. The thicknesses of these two layers are 800 μm and 200 μm, respectively. Both of them have been examined at average correlated color temperatures (CCT) of 7700 K and 8500 K. For this two-layer model, the concentration of red phosphor has been varied from 2 % to 30 % in the upper layer, while in the lower layer the yellow phosphor concentration was kept at 15 %. It was found interesting that the lighting properties, such as color rendering index (CRI) and luminous flux, are enhanced significantly, while the color uniformity is maintained at a level relatively close to the level in one-layer configuration (measured at the same correlated color temperature). Besides, the transmitted and reflected light of each phosphor layer have been revised by combining Kubelka-Munk and Mie-Lorenz theories. Through the analysis, it is demonstrated that the packaging configuration of two-layered remote phosphor that contains red-emitting α-SrO·3B2O3:Sm2+ phosphor particles provides a practical solution to general WLEDs lighting.


2019 ◽  
Vol 3 (4) ◽  
pp. 503
Author(s):  
Hsiao-Yi Lee ◽  
Phan Xuan Le ◽  
Doan Quoc Anh Nguyen

When compared with two conformal phosphor and in-cup phosphor structures, the remote phosphor structure has higher luminescent performance. However, it is difficult to control the color quality of the remote phosphor structure, so it has become a research target in recent years. So far, there are two remote phosphor structures used to improve color quality including dual-layer phosphor configuration and triple-layer phosphor configuration. This study suggests using those two configurations to make multi-chip white LEDs (WLEDs) that can achieve adequate values in color rendering index (CRI), color quality scale (CQS), luminous efficacy (LE) and color uniformity. WLEDs with a color temperature of 5600 K are applied. Research results show that the triple-layer phosphor configuration is superior in CRI, CQS, LE. Besides, the color deviation decreases significantly, meaning that the color homogeneity increases with the triple-layer phosphor configuration. This can be demonstrated by analyzing the scattering characteristics of phosphor classes through Mie theory, thus making the research results more reliable and valuable for producing quality WLEDs. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


Author(s):  
Van-Duc Phan ◽  
Phu Tran Tin ◽  
Minh Tran ◽  
Tran Thanh Trang

<p class="TextBody">As a novel class of inorganic phosphors, oxynitride and nitride luminescent materials have received considerable attention because of their potential applications in solid-state lightings and displays. In this paper, we built the simulation model of the 7000 K in-cup phosphor packaging white LEDs (IPP-WLEDs) by using the Light Tools software. After that, the effect of the Sr[Mg3SiN4]Eu2+ phosphor particle’s size on the lighting performance in term of CCT Deviation (D-CCT), Color Rendering Index (CRI), Color Quality Scale (CQS), and Lumen Output (LO) is analyzed and investigated. In addition, the scattering processes in the phosphor layers of the 7000 K IPP_WLEDs is derived using Mat Lab software. From the research results, we can state that the phosphor size significantly effects on the lighting performance of the 7000K IPP_WLEDs. It can be seen that Sr[Mg3SiN4]Eu2+ phosphor can be considered as a novel solution for improving the lighting performance of the WLEDs in the near future.</p>


Author(s):  
Nguyen Thi Phuong Loan ◽  
Nguyen Doan Quoc Anh

In this research paper, we introduced yellow-green MgCeAl11O19:Tb3+ asa new phosphor ingredient to adapt to the quality requirements onthe chromatic homogeneity and emitted luminous flux of modern multi-chip white LED lights (MCW-LEDs). The results from experiments and simulation show that employing MgCeAl11O19:Tb3+ phosphor can lead to much better optical properties and therefore is a perfect supporting material to achieve the goals of the research. When the MgCeAl11O19:Tb3+ phosphor is added into the phosphorus composite which already contains YAG: Ce3+ particles, and the silicone glue, it affects the optical properties significantly. In other words, the concentration of this phosphor can determine the efficiency of lumen output and chromatic homogeneity of WLEDs. In specific, as the concentration of MgCeAl11O19:Tb3+ go up, the luminous yield will increase accordingly, though there is an insignificant decrease in CQS. Moreover, if the MgCeAl11O19:Tb3+ concentration reduce a little bit, it is possible to better the correlated color temperature uniformity and lumen efficacy of LED packages. In addition, the Mie scattering theory, Monte Carlo simulation and LightTools 8.3.2 software are employed to analyze and simulate the LED packages’ structure as well as the phosphor compound.


2019 ◽  
Vol 9 (4) ◽  
pp. 675 ◽  
Author(s):  
Yung-Fang Chou ◽  
Chi-Feng Chen ◽  
Shang-Ping Ying ◽  
Yun-Ying Yeh

With the development of high-efficiency and high-power LEDs, they have become the most energy-efficient and environmentally friendly artificial light source. Phosphor-converted white LEDs are currently mainstream in the market. The remote phosphor is an effective way to enhance the conversion efficiency and lifetime of phosphor-converted LEDs. For applications of high-quality lighting and LCD backlights, the uniformity of angular correlated color temperature (CCT) is very important. This report explored a remote phosphor white LED with low angular CCT variance and high luminous efficiency by using TiO2 diffuser-loaded encapsulation. Experimental results revealed that for the TiO2 diffuser-loaded encapsulation remote phosphor white LED, the angular color uniformity could be improved by 31.82% and the luminous flux by 8.65%. Moreover, the mean CCTs of the TiO2 diffuser-loaded encapsulation and non-diffuser remote phosphor white LEDs were similar at a driving current of 350 mA. Finally, we showed that incorporating the TiO2 diffuser into the phosphor layer of the remote phosphor white LEDs, does not influence the reliability of the LED.


Sign in / Sign up

Export Citation Format

Share Document