scholarly journals Selecting a Suitable Remote Phosphor Configuration for Improving Color Quality of White Led

2019 ◽  
Vol 3 (4) ◽  
pp. 503
Author(s):  
Hsiao-Yi Lee ◽  
Phan Xuan Le ◽  
Doan Quoc Anh Nguyen

When compared with two conformal phosphor and in-cup phosphor structures, the remote phosphor structure has higher luminescent performance. However, it is difficult to control the color quality of the remote phosphor structure, so it has become a research target in recent years. So far, there are two remote phosphor structures used to improve color quality including dual-layer phosphor configuration and triple-layer phosphor configuration. This study suggests using those two configurations to make multi-chip white LEDs (WLEDs) that can achieve adequate values in color rendering index (CRI), color quality scale (CQS), luminous efficacy (LE) and color uniformity. WLEDs with a color temperature of 5600 K are applied. Research results show that the triple-layer phosphor configuration is superior in CRI, CQS, LE. Besides, the color deviation decreases significantly, meaning that the color homogeneity increases with the triple-layer phosphor configuration. This can be demonstrated by analyzing the scattering characteristics of phosphor classes through Mie theory, thus making the research results more reliable and valuable for producing quality WLEDs. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.

Author(s):  
Nguyen Thi Phuong Loan ◽  
Anh Tuan Le

The angular color uniformity (ACU) with the ability to evaluate chromatic performance of WLED has become an important target to achieve in producing higher-quality WLEDs. This paper studies the ACU enhancing effects of novel triple-phosphor configuration in lighting devices with remote phosphor structure. Moreover, the optical influences of remote phosphor structure with three phosphor layers (TL) on WLEDs properties are calculated and compared to the dual-layer (DL) one for reference. The experiments are applied to devices at 5 distinct correlated color temperature ranging from 5600-8500 K. The results presented that DL structure attains better color rendering index (CRI) than the TL one. Meanwhile, in terms of color quality scales (CQS), TL model shows higher values at all ACCTs, compared to the DL. Moreover, the luminous flux of DL configuration is lower than that of TL structure. In addition, the diversion of color temperature depicts as D-CCT in TL structure is much better than the value in DL structure, especially at high ACCT as 8500 K, which means TL is good for chromatic uniformity of high ACCTs WLEDs. These results proved that the triple-layer structure is superior and more effective to apply for acquiring the enhancement of WLEDs package.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Guo-Feng Luo ◽  
Nguyen Thi Phuong Loan ◽  
Le Van Tho ◽  
Nguyen Doan Quoc Anh ◽  
Hsiao-Yi Lee

AbstractSiO2 particles and red-emitting CaMgSi2O6:Eu2+,Mn2+ phosphor have been added into a yellow phosphor compound YAG:Ce3+ to enhance the optical efficiency of white light LEDs whose average correlated color temperature (CCT) is in the range of 5600 K ÷ 8500 K. It was observed that altering CaMgSi2O6:Eu2+,Mn2+ concentration from 2 % to 30 % while maintaining 5 % of the SiO2 strongly influenced the color rendering index (CRI), color quality scale (CQS), and lumen efficiency of the compound. Besides, through the application of Monte Carlo simulation and Mie-scattering theory, it was possible to improve the optical properties by CaMgSi2O6:Eu2+,Mn2+ and SiO2 addition. The results provided a practical approach to achieve higher luminous efficiency and better color uniformity in remote-phosphor white LEDs (RP-WLEDs).


2018 ◽  
Vol 2 (1) ◽  
pp. 55
Author(s):  
Hoang Quang Minh Tran ◽  
Huu Khanh Nhan Nguyen ◽  
Hsiao-Yi Lee

In this paper, by mixing the red-emitting α-SrO·3B2O3:Sm2+ conversion phosphor to yellow-emitting YAG:Ce phosphor compound, an innovative recommendation for increasing optical performance of white LEDs (WLEDs) with remote packaging, which has an average correlated color temperature (CCT) of 700K and 8500K, is proposed and demonstrated. By varying α-SrO·3B2O3:Sm2+ concentration from 2% to 24 %, the obtained results indicated that color uniformity, color rendering index (CRI), color quality scale (CQS), and luminous flux could be improved significantly. The results demonstrated a prospective recommendation for manufacturing remote packaging phosphor WLEDs.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
My Hanh Nguyen Thi ◽  
Phung Ton That ◽  
Nguyen Doan Quoc Anh ◽  
Tran Thanh Trang

Abstract The remote phosphor as a lighting structure has outstanding luminous efficiency compared to other options, such as conformal or in-cup. However, the lack of uniformity in distributed color has prevented remote phosphor from wider development. The answer to the chromatic performance enhancement that has been suggested by numerous researchers is the multi-layer configuration with two or three different types of chromatic phosphor. The research purpose is to select the best configuration for multi-chip white LEDs (WLEDs) to achieve optimal results in color quality scale (CQS), color rendering index (CRI), light output and color homogeneity. WLEDs mentioned in this paper have two distinct color temperatures, 6600 K and 7700 K. Experimental results show that the remote phosphor structure with three phosphor layers is superior in terms of color rendering, chromatic performance, and emitted light. The deviation of correlated color measured in this structure is also low, which means that the color uniformity is greatly enhanced in this multi-layer lighting structure. This result can be demonstrated by analyzing the scattering characteristics of the phosphoric layers using the Mie theory. The research findings have proven the effectiveness of the multi-phosphor configuration and can serve as a guideline to fabricate WLEDs with better performance.


2020 ◽  
Vol 4 (1) ◽  
pp. 74
Author(s):  
Min-Feng Lai ◽  
Hsiao-Yi Lee ◽  
Doan Quoc Anh Nguyen

This study proposed a triple-layer remote phosphor (TRP) structure to improve the color and luminous flux of white LEDs (WLEDs). TRP structure consists of 3 different phosphor layers: yellow YAG:Ce3+ layer below, red CaMgSi2O6:Eu2+,Mn2+ phosphor on top and green layer Ba2Li2Si2O7:Sn2+,Mn2+  phosphor in the middle. Using red CaMgSi2O6:Eu2+,Mn2+ to control the red light component leads to increased color rendering index (CRI). Utilize the green CaMgSi2O6:Eu2+,Mn2+ phosphor to control the green light component results in the increase in luminous efficacy (LE) of WLEDs. Furthermore, when the concentration of these two phosphors increased, yellow layer concentration YAG:Ce3+ decreased to maintain average correlated color temperatures (ACCTs) in the range from 6000 K-8500K. Besides CRI and LE, color quality scale (CQS) is also analyzed through concentration control of green phosphor and red phosphor. The research results show that the higher the concentration of CaMgSi2O6:Eu2+,Mn2+, the better for CRI. In contrast, CRI decreased significantly when increasing the concentration of Ba2Li2Si2O7:Sn2+,Mn2+. Meanwhile, CQS achieve notable enhancement in the concentration range of 10% -14% CaMgSi2O6:Eu2+,Mn2+, regardless of Ba2Li2Si2O7:Sn2+,Mn2+ concentration. LE, in particular, can also increase by more than 40% along with the improvement of CRI and CQS with the reduction of the backscattered light and addition of green light. Research results are a valuable reference for producers who wish to improve the color quality and enhance the luminous flux of WLEDs. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


2019 ◽  
Vol 3 (3) ◽  
pp. 464
Author(s):  
Hsiao-Yi Lee ◽  
Phan Xuan Le ◽  
Doan Quoc Anh Nguyen

In terms of luminous flux, the remote phosphor structure is better than conformal structure or in-cup phosphor structure, however, this structure often has inferior color quality compared to the others. As a result, many studies have been conducted to nd a solution to the drawback mentioned above. In this research, we are after the same goal using WLEDs structure with color temperature of 5600 K and come to the conclusion that dual-layer phosphor structure can improve the color rendering index (CRI) and the color quality scale (CQS). The concept of the research is to place red phosphor layer Mg2TiO4:Mn4+ on a yellow phosphor layer YAG:Ce3+ and locate the concentration of Mg2TiO4:Mn4+ that allows the color quality to reach the highest value. The result shows that Mg2TiO4:Mn4+ benets CRI and CQS, more specifically, the addition of Mg2TiO4:Mn4+ in WLEDs boosts the red light component, thus, enhancing CRI and CQS. However, it is demonstrated through the application of Mie-scattering theory and Lambert-Beer law that when the concentration of Mg2TiO4:Mn4+ exceed the limit, it can harm the luminous flux of WLEDs. The result of this research is a valuable contribution to improving the techniques of manufacturing better WLEDs with higher white light quality.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


2018 ◽  
Vol 2 (3) ◽  
pp. 208
Author(s):  
Doan Quoc Anh Nguyen

When the features of remote phosphor structure are compared with these of conformal phosphor or in-cup phosphor, it is recognized that it is more outstanding than the rest about luminous flux but the quality of color tends to be worse. Through that we have grasped these disadvantages and find out many studies in order to improve the color of the remote phosphor structure. In this study, we propose a dual-layer remote phosphor structure that could improve the color rendering index (CRI) and color quality scale (CQS) for WLEDs. In this study, three similar WLEDs structures but having different color temperatures including 5600 K, 6600 K and 7700K are applied. The principal idea is putting a red phosphoric layer SrwFxByOz:Eu2+,Sm2+ on the yellow phosphorus layer YAG:Ce3+. The results show that SrwFxByOz:Eu2+,Sm2+  brings great benefits to increasing CRI and CQS. Specifically, the greater the concentration of SrwFxByOz:Eu2+,Sm2+ has, the higher CRI and CQS get. However, the declining trend of luminous flux occurs when the SrwFxByOz:Eu2+,Sm2+ concentration exceeds the level. This can be demonstrated through the results of the study and be explained by the Mie dispersion theory and the Lambert-Beer law. The results of this article are important in making WLEDs of higher color quality.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2017 ◽  
Vol 35 (3) ◽  
pp. 618-625
Author(s):  
Tran Hoang Quang Minh ◽  
Nguyen Huu Khanh Nhan ◽  
Nguyen Doan Quoc Anh ◽  
Hsiao-Yi Lee

AbstractThis paper investigates a method for improving the lighting performance of white light-emitting diodes (WLEDs), packaged using two separating remote phosphor layers, yellow-emitting YAG:Ce phosphor layer and red-emitting α-SrO·3B2O3:Sm2+ phosphor layer. The thicknesses of these two layers are 800 μm and 200 μm, respectively. Both of them have been examined at average correlated color temperatures (CCT) of 7700 K and 8500 K. For this two-layer model, the concentration of red phosphor has been varied from 2 % to 30 % in the upper layer, while in the lower layer the yellow phosphor concentration was kept at 15 %. It was found interesting that the lighting properties, such as color rendering index (CRI) and luminous flux, are enhanced significantly, while the color uniformity is maintained at a level relatively close to the level in one-layer configuration (measured at the same correlated color temperature). Besides, the transmitted and reflected light of each phosphor layer have been revised by combining Kubelka-Munk and Mie-Lorenz theories. Through the analysis, it is demonstrated that the packaging configuration of two-layered remote phosphor that contains red-emitting α-SrO·3B2O3:Sm2+ phosphor particles provides a practical solution to general WLEDs lighting.


2020 ◽  
Vol 4 (2) ◽  
pp. 118
Author(s):  
Ming Jui Chen ◽  
Hsiao-Yi Lee ◽  
Nguyen Doan Quoc Anh ◽  
Thi Phuong Loan Nguyen ◽  
Van Tho Le

In this paper, the first issue presented and analyzed by several experiments is the influence of the distance between phosphor layers in the dual-layer and triple-layer remote package on luminous flux and color rendering property. During the simulation, it was realized that it was possible to create a suitable distance to create higher quality white light-emitting diodes (WLEDs) by adjusting the distance between the phosphor layers. According to the study results, 0.1 mm is the most reasonable distance between two phosphor layers so that the performance of the multi-chip white light LED (MCW LED) can get the best optimal effect. Through a series of experiments, it has been proved that the efficiency of the two-layer structure gives optical properties higher than the three-layer structure related to distance. The highest achievable lumen output is 0.6 mm for the triple-layer structure and 0.1 mm for dual-layer structure. Meanwhile, the color rendering index changes insignificantly when the distance increases. The triple-layer package is not practical for high-power white LEDs due to the high cost and low conversion efficiency. The dual-layer remote phosphor package with a 0.1 mm phosphorus gap is the optimal structure of WLED in improving luminous efficiency and color rendering index.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium provided the original work is properly cited.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Phung Ton That ◽  
Nguyen Thi Phuong Loan ◽  
Le Van Tho ◽  
Nguyen Doan Quoc Anh ◽  
Hsing-Yuan Liao ◽  
...  

Abstract Usually, remote phosphor structures are beneficial in terms of flux but unfavorable in terms of color quality compared to conformal phosphor or in-cup phosphor packages. To eliminate this disadvantage, many studies have focused on increasing the chromatic quality of the remote phosphor configuration, which requires great efforts in improving two parameters of color: color rendering index (CRI) and color quality scale (CQS). CRI is known as the most useful quantitative method used to measure the ability of a light source to reproduce the colors of illuminated objects faithfully and naturally. Similarly, CQS is also a method of lighting quality determination and analysis, especially used as an alternative to the unsaturated CRI colors. In this paper, we proposed dual-layer remote phosphor structure as a novel method of CRI and CQS enhancement to improve WLEDs’ color quality. Five alike WLEDs but having different color temperatures in the range of 5600 K to 8500 K were applied in this study. The idea behind the study is to place a red phosphor layer SrwFxByOz:Eu2+,Sm2+ on the yellow phosphor layer YAG:Ce3+ and then determining an appropriate concentration of SrwFxByOz:Eu2+,Sm2+ added to achieve the highest color quality. The results point out that SrwFxByOz:Eu2+,Sm2+ brings great benefits to the improvement of CRI and CQS parameters. Specifically, the higher the SrwFxByOz:Eu2+,Sm2+ concentration results in the greater CRI and CQS, owning to the enriched red light components in the WLEDs. However, the flux has a tendency of dropping when SrwFxByOz:Eu2+,Sm2+ concentration rises excessively. This has been proved by using the Mie-scattering theory and the Lambert-Beer law. The results of this article are essential references for manufacturing WLEDs with higher chromatic quality.


Sign in / Sign up

Export Citation Format

Share Document