scholarly journals Subsurface Cavity Detection Using Electrical Resistivity Tomography (Ert); A Case Study from Southern Quetta, Pakistan

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Syed Ali Abbas ◽  
Muhammad Saeed ◽  
Mukhtiar Ghani ◽  
Taseer Ahmad

AbstractDipole-dipole electrical resistivity tomographic method was applied to investigate the subsurface cavities at Staff Welfare Hospital & School Quetta. A total of 890-meter profile line was covered along five smaller profile lines and fracture zones with maximum 21 meters interval. The cavity system along profile line-1 and 2 was very restricted and had no direct impact on infrastructure while major cavity beneath the building was traced at profile line-3 and line-4 thus constituting a ~20m wide cavity system with 3-4 small interconnected cavities between depths of 7 to 21 meters. This system was also traced at profile line-4 at a depth of 10 meters having a reduced width of 10m. At profile line-5, a few other cavities were detected that proved imperceptible due to limitations in data acquisition. To conclude, the cavity systems traced in profile line-3 and profile line-4 were the most perilous ones and are commonly the foremost reason for building collapse.

2020 ◽  
Vol 12 (1) ◽  
pp. 1094-1104
Author(s):  
Nima Dastanboo ◽  
Xiao-Qing Li ◽  
Hamed Gharibdoost

AbstractIn deep tunnels with hydro-geological conditions, it is paramount to investigate the geological structure of the region before excavating a tunnel; otherwise, unanticipated accidents may cause serious damage and delay the project. The purpose of this study is to investigate the geological properties ahead of a tunnel face using electrical resistivity tomography (ERT) and tunnel seismic prediction (TSP) methods. During construction of the Nosoud Tunnel located in western Iran, ERT and TSP 303 methods were employed to predict geological conditions ahead of the tunnel face. In this article, the results of applying these methods are discussed. In this case, we have compared the results of the ERT method with those of the TSP 303 method. This work utilizes seismic methods and electrical tomography as two geophysical techniques are able to detect rock properties ahead of a tunnel face. This study shows that although the results of these two methods are in good agreement with each other, the results of TSP 303 are more accurate and higher quality. Also, we believe that using another geophysical method, in addition to TSP 303, could be helpful in making decisions in support of excavation, especially in complicated geological conditions.


Author(s):  
Marco D. Vásconez-Maza ◽  
Pedro Martínez-Pagán ◽  
Hasan Aktarakçi ◽  
María C. García-Nieto ◽  
Marcos A. Martínez-Segura

This communication reports an improvement of the quality of the electrical data obtained from the application of electrical resistivity tomography method on archaeological studies. The electrical contact between ground and electrode enhances significantly by using carbomer-based gel during the electrical resistivity tomography measurements. Not only does the gel promote the conservation of the building surface under investigation, but it also virtually eliminates the necessity of conventional spike electrodes, which in many archaeological studies are inadequate or not permitted. Results evidenced an enhancement in the quality of the electrical data obtained in the order of thousands of units compared with those without using the carbomer-based gel. The potential and capabilities of this affordable gel make it appropriate to be applied to other geoelectrical studies beyond archaeological investigations. Moreover, it might solve corrosion issues on conventional spike electrodes, and electrical multicore cables usually provoked for added saltwater attempting to improve the electrical contact.


Sign in / Sign up

Export Citation Format

Share Document