scholarly journals Model of a Ducted Axial-Flow Hydrokinetic Turbine – Results of Experimental and Numerical Examination

2018 ◽  
Vol 25 (3) ◽  
pp. 113-122 ◽  
Author(s):  
Adam Góralczyk ◽  
Adam Adamkowski

Abstract The article presents the numerical algorithm of the developed computer code which calculates performance characteristics of ducted axial-flow hydrokinetic turbines. The code makes use of the vortex lattice method (VLM), which has been developed and used in IMP PAN for years, to analyse the operation of various fluid-flow machines. To verify the developed software, a series of model tests have been performed in the cavitation tunnel being part of IMP PAN research equipment.

AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 1230-1233
Author(s):  
Paulo A. O. Soviero ◽  
Hugo B. Resende

2019 ◽  
Vol 2019 ◽  
pp. 1-15
Author(s):  
Sen Mao ◽  
Changchuan Xie ◽  
Lan Yang ◽  
Chao Yang

A morphing trailing-edge (TE) wing is an important morphing mode in aircraft design. In order to explore the static aeroelastic characteristics of a morphing TE wing, an efficient and feasible method for static aeroelastic analysis has been developed in this paper. A geometrically exact vortex lattice method (VLM) is applied to calculate the aerodynamic forces. Firstly, a typical model of a morphing TE wing is chosen and built which has an active morphing trailing edge driven by a piezoelectric patch. Then, the paper carries out the static aeroelastic analysis of the morphing TE wing and corresponding simulations were carried out. Finally, the analysis results are compared with those of a traditional wing with a rigid trailing edge using the traditional linearized VLM. The results indicate that the geometrically exact VLM can better describe the aerodynamic nonlinearity of a morphing TE wing in consideration of geometrical deformation in aeroelastic analysis. Moreover, out of consideration of the angle of attack, the deflection angle of the trailing edge, among others, the wing system does not show divergence but bifurcation. Consequently, the aeroelastic analysis method proposed in this paper is more applicable to the analysis and design of a morphing TE wing.


1988 ◽  
Vol 25 (2) ◽  
pp. 97-98 ◽  
Author(s):  
B. Rajeswari ◽  
H. N. V. Dutt

Author(s):  
Ye Tian ◽  
Spyros A. Kinnas

A hybrid method which couples a Vortex-Lattice Method (VLM) solver and a Reynolds-Averaged Navier-Stokes (RANS) solver is applied to simulate the interaction between a Dynamic Positioning (DP) thruster and an FPSO hull. The hybrid method could significantly reduce the number of cells to fifth of that in a full blown RANS simulation and thus greatly enhance the computational efficiency. The numerical results are first validated with available experimental data, and then used to assess the significance of the thruster/hull interaction in DP systems.


Author(s):  
D. S. Miklosovic ◽  
P. M. Bookey

An experimental effort was undertaken to assess the effectiveness and efficiency of three winglets mounted chordwise to the tip of a rectangular wing (NACA 0018 section). The winglets, with an aspect ratio of 3.6, were mounted on a half-span wing having an aspect ratio of 3.1. Twenty configurations of varying dihedral arrangements were analyzed with a vortex lattice method and tested in a low-speed wind tunnel at a Reynolds number of 600,000. In general, the arrangements involving high dihedral angles had lower performance increments, due to lower lift and higher interference drag. More specifically, the results showed that the winglets placed at 60, 45, and 30 degrees, respectively, produced nominal 4% higher lift and 46% lower drag. The most dramatic findings from this study show that positioning the winglet dihedral angles had the result of adjusting the point of maximum L/D and the magnitude of the pitching moment coefficient. These observations suggest that multiple winglet dihedral changes affect the lift, drag, and pitching moment in such a way that they are feasible for use as actively-controlled surfaces to improve the performance of aircraft at various flight conditions and to “tune” the longitudinal stability characteristics of the wing.


Sign in / Sign up

Export Citation Format

Share Document