Patterns of intron sequence conservation in the genus Tetrahymena

Author(s):  
Yichen Zheng ◽  
Kristen L. Dimond ◽  
Dan Graur ◽  
Rebecca A. Zufall
1993 ◽  
Vol 2 (3) ◽  
pp. 366-382 ◽  
Author(s):  
Miroslaw Cygler ◽  
Joseph D. Schrag ◽  
Joel L. Sussman ◽  
Michal Harel ◽  
Israel Silman ◽  
...  

Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 417-426
Author(s):  
Richard W Beeman ◽  
M Scott Thomson ◽  
John M Clark ◽  
Marco A DeCamillis ◽  
Susan J Brown ◽  
...  

Abstract A recently isolated, lethal mutation of the homeotic Abdominal gene of the red flour beetle Tribolium castaneum is associated with an insertion of a novel retrotransposon into an intron. Sequence analysis indicates that this retrotransposon, named Woot, is a member of the gypsy family of mobile elements. Most strains of T. castaneum appear to harbor ~25-35 copies of Woot per genome. Woot is composed of long terminal repeats of unprecedented length (3.6 kb each), flanking an internal coding region 5.0 kb in length. For most copies of Woot, the internal region includes two open reading frames (ORFs) that correspond to the gag and pol genes of previously described retrotransposons and retroviruses. The copy of Woot inserted into Abdominal bears an apparent single frameshift mutation that separates the normal second ORF into two. Woot does not appear to generate infectious virions by the criterion that no envelop gene is discernible. The association of Woot with a recent mutation suggests that this retroelement is currently transpositionally active in at least some strains.


1988 ◽  
Vol 8 (6) ◽  
pp. 2361-2366 ◽  
Author(s):  
K A Jarrell ◽  
R C Dietrich ◽  
P S Perlman

A self-splicing group II intron of yeast mitochondrial DNA (aI5g) was divided within intron domain 4 to yield two RNAs that trans-spliced in vitro with associated trans-branching of excised intron fragments. Reformation of the domain 4 secondary structure was not necessary for the trans reaction, since domain 4 sequences were shown to be dispensable. Instead, the trans reaction depended on a previously unpredicted interaction between intron domain 5, the most highly conserved region of group II introns, and another region of the RNA. Domain 5 was shown to be essential for cleavage at the 5' splice site. It stimulated that cleavage when supplied as a trans-acting RNA containing only 42 nucleotides of intron sequence. The relevance of our findings to in vivo trans-splicing mechanisms is discussed.


2006 ◽  
Vol 34 (Web Server) ◽  
pp. W84-W88 ◽  
Author(s):  
R. Wernersson ◽  
K. Rapacki ◽  
H.-H. Staerfeldt ◽  
P. W. Sackett ◽  
A. Molgaard

BMC Genomics ◽  
2007 ◽  
Vol 8 (1) ◽  
pp. 283 ◽  
Author(s):  
Ian Armstead ◽  
Lin Huang ◽  
Julie King ◽  
Helen Ougham ◽  
Howard Thomas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document