scholarly journals Determination of phenolic acids by capillary zone electrophoresis and HPLC

2008 ◽  
Vol 6 (3) ◽  
pp. 410-418 ◽  
Author(s):  
František Kvasnička ◽  
Jana Čopíková ◽  
Rudolf Ševčík ◽  
Jana Krátká ◽  
Andrej Syntytsia ◽  
...  

AbstractSelected phenolic acids are determined by capillary zone electrophoresis and HPLC, each using UV detection. The optimised CZE background electrolyte contained 50 mM acetic acid, 95 mM 6-aminocaproic acid, 0.1% polyacrylamide, 1% polyvinylpyrrolidone, and 10% methanol. Twelve phenolic acids (gallic, p-hydroxybenzoic, 3,4-dihydroxybenzoic, vanillic, syringic, o-coumaric, p-coumaric, caffeic, sinapic, ferulic, salicylic and chlorogenic) were separated within 10 minutes. Chromatographic separation of these phenolic acids was carried out on an Eclipse XBD C8 column using a mobile phase gradient (acetonitrile / methanol / water / 0.1% phosphoric acid); all were separated within 25 minutes. Electrophoretic and chromatographic determinations of ferulic and chlorogenic acids were compared on barley, malt, and potato samples. The methods’ characteristics were: linearity (1–20 mg ml and 0.2–4 mg ml−1), accuracy (recovery 94 ± 5% and 96 ± 4%), intra-assay repeatability (4.1% and 3.5%), and detection limit (0.2 and 0.02 mg ml−1).

2005 ◽  
Vol 53 (20) ◽  
pp. 8092-8092
Author(s):  
Alegría Carrasco Pancorbo ◽  
Carmen Cruces-Blanco ◽  
Antonio Segura Carretero ◽  
Alberto Fernández Gutiérrez

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Thi Thanh Vuong Tong ◽  
Thi Thoa Cao ◽  
Nguyen Ha Tran ◽  
Thi Kim Van Le ◽  
Dinh Chi Le

A green, cost-effective, and simple capillary zone electrophoresis (CZE) method was developed and validated for simultaneous determination of chloramphenicol, methylparaben, and propylparaben in eye-drops. With sodium tetraborate as background electrolyte (BGE), the apparent mobilities of chloramphenicol, methylparaben, and propylparaben increased and analysis time reduced when pH of BGE increased from 8.5 to 10.0 and concentration of BGE decreased from 40 mM to 15 mM, but complete separation of chloramphenicol from other matrix components was achieved only with sodium tetraborate concentration at 30 mM or higher and at pH = 9.3 or lower. The most suitable electrophoretic conditions for the intended application were a 30 mM sodium tetraborate solution, pH 9.3 as BGE, working voltage set at 25 kV, and UV detection at 280 nm at the cathodic extremity of the capillary. The final method was validated and proved to be reliable for assay of chloramphenicol, methylparaben, and propylparaben in eye-drops.


2004 ◽  
Vol 52 (22) ◽  
pp. 6687-6693 ◽  
Author(s):  
Alegría Carrasco Pancorbo ◽  
Carmen Cruces-Blanco ◽  
Antonio Segura Carretero ◽  
Alberto Fernández Gutiérrez

Sign in / Sign up

Export Citation Format

Share Document