sodium tetraborate
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 32)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
pp. 24-32
Author(s):  
Olga Yurevna Eremina ◽  
◽  
Veronika Valentinovna Olifer ◽  

The validation of the method for testing the effectiveness of food baits against colonies of the Pharaoh ant using experiments with commercially produced and laboratory-prepared sugar baits containing insecticides from different chemical groups was carried out. We studied baits based on boron compounds (boric acid and sodium tetraborate), neonicotinoids (thiamethoxam, imidacloprid, and acetamiprid), oxadiazines (indoxacarb), phenylpyrazoles (fipronil), carbamates (methomyl), pyrroles (chlorfenapyr) amidinohydrazones (hydramethylnon), avermectins (abamectin), and insect growth regulators (pyriproxyfen). The proposed algorithm for conducting experiments covers the whole variety of active ingredients of insecticides used in baits. The verification of several dozen products intended for the elimination of colonies of the Pharaoh ant has shown that most of the products are suitable for the requirements for efficacy indices. Keywords: Pharaoh ant, insecticidal baits.


2021 ◽  
Author(s):  
◽  
Edward Kazimierz Mroczek

<p>A high temperature hydrogen electrode concentration cell based on a design published by Macdonald, Butler and Owen1, was constructed and used to study the following protolytic equilibria. Thermodynamic equilibrium constants were derived by the usual method of extrapolation to zero ionic strength. 1. The ionization of water at temperatures from 75 to 225 degrees C in 0.1, 0.3, 0.5 and 1.0 mol kg-1 KCl solution. pK degrees w = 7229.701 /T + 30.285logT - 85.007 2. The pH calibration of 0.01 and 0.05 mol kg-1 sodium tetraborate at temperatures from 75 to 250 degrees C in O.1, 0.3 and 0.5 mol kg-1 NaCl solution. 0.0l mol kg-1 Sodium Tetraborate Solution pH = -0.4830t1 + 5.5692t2 + 7.7167t3 + 8.6983 0.05 mol kg-1 Sodium Tetraborate Solution pH = -0.0455tl + 8.3987t2 + O.2123t3 8.8156 3. The second dissociation of sulphuric acid at temperatures from 75 to 225 degree C in 0.1, 0.3 and 0.5 mol kg-l KCl solution. pK degrees 2 = 5.3353t1 - 15.9518t2 - 111.4929t3 + 3.8458 pK degrees 2 = 6.1815t*1 + 12.7301t*2. + 3.0660 (up to 150 degrees C) Where the t1 to t3= and t*1 and t*2 are the Clark-Glew temperature variable terms at reference temperatures of 423.15 and 373.15 K respectively2. 4. The acid hydrolysis of K-feldspar to K-mica and quartz at a temperature of 225 degrees C. The determination of the hydrolysis equilibrium constant was limited to one temperature because of the very slow reaction rate at temperatures less than 300 degrees C. log(mK+/mH+) = 4.2 (at 225 degrees C) Where a comparison could be made, the results of this study agreed well with previously published work, with the exception of the second dissociation constant of sulphuric acid at temperatures above 150 degrees C. Accurate values for the molal dissociation constant of the KSO-4 ion pair are required at elevated temperatures before the pK degrees 2 results can be fully evaluated. This research was severely restricted by the unpredictable loss of electrical continuity between the two cell compartments at temperatures above 150 degrees C. The problem appeared to be associated with the non-wettability of the porous Teflon plug which formed the liquid junction.</p>


2021 ◽  
Author(s):  
◽  
Edward Kazimierz Mroczek

<p>A high temperature hydrogen electrode concentration cell based on a design published by Macdonald, Butler and Owen1, was constructed and used to study the following protolytic equilibria. Thermodynamic equilibrium constants were derived by the usual method of extrapolation to zero ionic strength. 1. The ionization of water at temperatures from 75 to 225 degrees C in 0.1, 0.3, 0.5 and 1.0 mol kg-1 KCl solution. pK degrees w = 7229.701 /T + 30.285logT - 85.007 2. The pH calibration of 0.01 and 0.05 mol kg-1 sodium tetraborate at temperatures from 75 to 250 degrees C in O.1, 0.3 and 0.5 mol kg-1 NaCl solution. 0.0l mol kg-1 Sodium Tetraborate Solution pH = -0.4830t1 + 5.5692t2 + 7.7167t3 + 8.6983 0.05 mol kg-1 Sodium Tetraborate Solution pH = -0.0455tl + 8.3987t2 + O.2123t3 8.8156 3. The second dissociation of sulphuric acid at temperatures from 75 to 225 degree C in 0.1, 0.3 and 0.5 mol kg-l KCl solution. pK degrees 2 = 5.3353t1 - 15.9518t2 - 111.4929t3 + 3.8458 pK degrees 2 = 6.1815t*1 + 12.7301t*2. + 3.0660 (up to 150 degrees C) Where the t1 to t3= and t*1 and t*2 are the Clark-Glew temperature variable terms at reference temperatures of 423.15 and 373.15 K respectively2. 4. The acid hydrolysis of K-feldspar to K-mica and quartz at a temperature of 225 degrees C. The determination of the hydrolysis equilibrium constant was limited to one temperature because of the very slow reaction rate at temperatures less than 300 degrees C. log(mK+/mH+) = 4.2 (at 225 degrees C) Where a comparison could be made, the results of this study agreed well with previously published work, with the exception of the second dissociation constant of sulphuric acid at temperatures above 150 degrees C. Accurate values for the molal dissociation constant of the KSO-4 ion pair are required at elevated temperatures before the pK degrees 2 results can be fully evaluated. This research was severely restricted by the unpredictable loss of electrical continuity between the two cell compartments at temperatures above 150 degrees C. The problem appeared to be associated with the non-wettability of the porous Teflon plug which formed the liquid junction.</p>


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1094
Author(s):  
Baodong Liu ◽  
Xinjie Huang ◽  
Shuo Wang ◽  
Dongmei Wang ◽  
Hongge Guo

This work was designed to determine the mechanical properties and static cushioning performance of polyvinyl alcohol (PVA)/bagasse fibre foam composites with a multiple-factor experiment. Scanning electron microscopy (SEM) analysis and static cushioning tests were performed on the foamed composites and the results were compared with those of commonly used expanded polystyrene (EPS). The results were as follows: the materials had a mainly open cell structure, and bagasse fibre had good compatibility with PVA foam. With increasing PVA content, the mechanical properties of the system improved. The mechanical properties and static cushioning properties of the foam composite almost approached those of EPS. In addition, a small amount of sodium tetraborate obviously regulated the foaming ratio of foamed composites. With increasing sodium tetraborate content, the mechanical properties of foamed composites were enhanced. The yield strength and Young’s modulus of the material prepared by reducing the water content to 80.19 wt% were too high and not suitable for cushioned packaging of light and fragile products.


2021 ◽  
pp. 126939
Author(s):  
Xiaoju Yan ◽  
Shirong Cheng ◽  
Cong Ma ◽  
Junyu Li ◽  
Guodong Wang ◽  
...  

2021 ◽  
Vol 1037 ◽  
pp. 767-774
Author(s):  
Boris M. Goltsman ◽  
Elena A. Yatsenko ◽  
Lyubov A. Yatsenko ◽  
Natalia S. Goltsman ◽  
Dmitriy M. Kuzmenkov

The main trends in the use of silicate raw materials for the production of heat-insulating materials are considered. It is shown that the introduction of modifying additives-fluxes is promising to reduce the energy intensity of the technology. The substances that play the role of fluxes in the silicate industry are selected. The most active fluxes were chosen - sodium tetraborate Na2B4O7 (borax) and sodium fluoride NaF. The mechanism of their melting effect on the silicate mass is investigated. It is shown that both borax and sodium fluoride are active fluxes, intensifying the melting of silicate raw materials of all types. The use of fluoride is hampered by a narrow temperature range, in which the formation of a stable porous structure is possible.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Thi Thanh Vuong Tong ◽  
Thi Thoa Cao ◽  
Nguyen Ha Tran ◽  
Thi Kim Van Le ◽  
Dinh Chi Le

A green, cost-effective, and simple capillary zone electrophoresis (CZE) method was developed and validated for simultaneous determination of chloramphenicol, methylparaben, and propylparaben in eye-drops. With sodium tetraborate as background electrolyte (BGE), the apparent mobilities of chloramphenicol, methylparaben, and propylparaben increased and analysis time reduced when pH of BGE increased from 8.5 to 10.0 and concentration of BGE decreased from 40 mM to 15 mM, but complete separation of chloramphenicol from other matrix components was achieved only with sodium tetraborate concentration at 30 mM or higher and at pH = 9.3 or lower. The most suitable electrophoretic conditions for the intended application were a 30 mM sodium tetraborate solution, pH 9.3 as BGE, working voltage set at 25 kV, and UV detection at 280 nm at the cathodic extremity of the capillary. The final method was validated and proved to be reliable for assay of chloramphenicol, methylparaben, and propylparaben in eye-drops.


Sign in / Sign up

Export Citation Format

Share Document