scholarly journals An approximation to the cross sections of Z l boson production at CLIC by using neural networks

Open Physics ◽  
2013 ◽  
Vol 11 (3) ◽  
Author(s):  
Serkan Akkoyun ◽  
Seyit Kara

AbstractIn this work, the possible dynamics associated with leptophilic Z l boson at CLIC (Compact Linear Collider) have been investigated by using artificial neural networks (ANNs). These hypotetic massive boson Z l have been shown through the process e + e −→µ+µ−. Furthermore, the invariant mass distributions for final muons have been consistently predicted by using ANN. For these highly non-linear data, we have constructed consistent empirical physical formulas (EPFs) by appropriate feed-forward ANN. These ANNEPFs can be used to derive further physical functions which could be relevant to studying Z l.

Buildings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 44
Author(s):  
Fernando A. N. Silva ◽  
João M. P. Q. Delgado ◽  
Rosely S. Cavalcanti ◽  
António C. Azevedo ◽  
Ana S. Guimarães ◽  
...  

The work presents the results of an experimental campaign carried out on concrete elements in order to investigate the potential of using artificial neural networks (ANNs) to estimate the compressive strength based on relevant parameters, such as the water–cement ratio, aggregate–cement ratio, age of testing, and percentage cement/metakaolin ratios (5% and 10%). We prepared 162 cylindrical concrete specimens with dimensions of 10 cm in diameter and 20 cm in height and 27 prismatic specimens with cross sections measuring 25 and 50 cm in length, with 9 different concrete mixture proportions. A longitudinal transducer with a frequency of 54 kHz was used to measure the ultrasonic velocities. An ANN model was developed, different ANN configurations were tested and compared to identify the best ANN model. Using this model, it was possible to assess the contribution of each input variable to the compressive strength of the tested concretes. The results indicate an excellent performance of the ANN model developed to predict compressive strength from the input parameters studied, with an average error less than 5%. Together, the water–cement ratio and the percentage of metakaolin were shown to be the most influential factors for the compressive strength value predicted by the developed ANN model.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Mehmet Hacibeyoglu ◽  
Mohammed H. Ibrahim

Multilayer feed-forward artificial neural networks are one of the most frequently used data mining methods for classification, recognition, and prediction problems. The classification accuracy of a multilayer feed-forward artificial neural networks is proportional to training. A well-trained multilayer feed-forward artificial neural networks can predict the class value of an unseen sample correctly if provided with the optimum weights. Determining the optimum weights is a nonlinear continuous optimization problem that can be solved with metaheuristic algorithms. In this paper, we propose a novel multimean particle swarm optimization algorithm for multilayer feed-forward artificial neural networks training. The proposed multimean particle swarm optimization algorithm searches the solution space more efficiently with multiple swarms and finds better solutions than particle swarm optimization. To evaluate the performance of the proposed multimean particle swarm optimization algorithm, experiments are conducted on ten benchmark datasets from the UCI repository and the obtained results are compared to the results of particle swarm optimization and other previous research in the literature. The analysis of the results demonstrated that the proposed multimean particle swarm optimization algorithm performed well and it can be adopted as a novel algorithm for multilayer feed-forward artificial neural networks training.


2013 ◽  
Vol 4 (2) ◽  
pp. 39-53 ◽  
Author(s):  
Thomas A. Woolman ◽  
John C. Yi

This study addresses the use of predictive modeling techniques; primarily feed-forward artificial neural networks as a tool for forecasting geological exploration targets for gold prospecting. It also provides evidence of effectiveness of using Business Intelligence systems to model pathfinder variables, anomaly detection, and forecasting to locate potential exploration sites for precious metals. The results indicate that the use of advanced Business Intelligence systems can be of extremely high value to the extractive minerals exploration industry.


2015 ◽  
Vol 760 ◽  
pp. 771-776
Author(s):  
Daniel Constantin Anghel ◽  
Nadia Belu

This paper presents the application of Artificial Neural Networks to predict the malfunction probability of the human-machine-environment system, in order to provide some guidance to designers of manufacturing processes. Artificial Neural Networks excel in gathering difficult non-linear relationships between the inputs and outputs of a system. We used, in this work, a feed forward neural network in order to predict the malfunction probability. The neural network is simulated with Matlab. The design experiment presented in this paper was realized at University of Pitesti, at the Faculty of Mechanics and Technology, Technology and Management Department.


Sign in / Sign up

Export Citation Format

Share Document