Quaternion epipolar decomposition for camera pose identification and animation

2013 ◽  
Vol 21 (1) ◽  
Author(s):  
W. Skarbek ◽  
M. Tomaszewski

AbstractIn the literature of computer vision, computer graphics and robotics, the use of quaternions is exclusively related to 3D rotation representation and interpolation. In this research we found how epipoles in multi-camera systems can be used to represent camera poses in the quaternion domain. The rotational quaternion is decomposed in two epipole rotational quaternions and one z axis rotational quaternion. Quadratic form of the essential matrix is also related to quaternion factors. Thus, five pose parameters are distributed into three independent rotational quaternions resulting in measurement error separation at camera pose identification and greater flexibility at virtual camera animation. The experimental results refer to the design of free viewpoint television.

1999 ◽  
Vol 18 (3-4) ◽  
pp. 265-273
Author(s):  
Giovanni B. Garibotto

The paper is intended to provide an overview of advanced robotic technologies within the context of Postal Automation services. The main functional requirements of the application are briefly referred, as well as the state of the art and new emerging solutions. Image Processing and Pattern Recognition have always played a fundamental role in Address Interpretation and Mail sorting and the new challenging objective is now off-line handwritten cursive recognition, in order to be able to handle all kind of addresses in a uniform way. On the other hand, advanced electromechanical and robotic solutions are extremely important to solve the problems of mail storage, transportation and distribution, as well as for material handling and logistics. Finally a short description of new services of Postal Automation is referred, by considering new emerging services of hybrid mail and paper to electronic conversion.


Author(s):  
Abd El Rahman Shabayek ◽  
Olivier Morel ◽  
David Fofi

For long time, it was thought that the sensing of polarization by animals is invariably related to their behavior, such as navigation and orientation. Recently, it was found that polarization can be part of a high-level visual perception, permitting a wide area of vision applications. Polarization vision can be used for most tasks of color vision including object recognition, contrast enhancement, camouflage breaking, and signal detection and discrimination. The polarization based visual behavior found in the animal kingdom is briefly covered. Then, the authors go in depth with the bio-inspired applications based on polarization in computer vision and robotics. The aim is to have a comprehensive survey highlighting the key principles of polarization based techniques and how they are biologically inspired.


Sign in / Sign up

Export Citation Format

Share Document