Modeling Human Motion: A Task at the Crossroads of Neuroscience, Computer Vision and Robotics

2020 ◽  
pp. 1-14
Author(s):  
Nicoletta Noceti ◽  
Alessandra Sciutti ◽  
Francesco Rea
1999 ◽  
Vol 18 (3-4) ◽  
pp. 265-273
Author(s):  
Giovanni B. Garibotto

The paper is intended to provide an overview of advanced robotic technologies within the context of Postal Automation services. The main functional requirements of the application are briefly referred, as well as the state of the art and new emerging solutions. Image Processing and Pattern Recognition have always played a fundamental role in Address Interpretation and Mail sorting and the new challenging objective is now off-line handwritten cursive recognition, in order to be able to handle all kind of addresses in a uniform way. On the other hand, advanced electromechanical and robotic solutions are extremely important to solve the problems of mail storage, transportation and distribution, as well as for material handling and logistics. Finally a short description of new services of Postal Automation is referred, by considering new emerging services of hybrid mail and paper to electronic conversion.


2021 ◽  
Vol 10 ◽  
pp. 117957272110223
Author(s):  
Thomas Hellsten ◽  
Jonny Karlsson ◽  
Muhammed Shamsuzzaman ◽  
Göran Pulkkis

Background: Several factors, including the aging population and the recent corona pandemic, have increased the need for cost effective, easy-to-use and reliable telerehabilitation services. Computer vision-based marker-less human pose estimation is a promising variant of telerehabilitation and is currently an intensive research topic. It has attracted significant interest for detailed motion analysis, as it does not need arrangement of external fiducials while capturing motion data from images. This is promising for rehabilitation applications, as they enable analysis and supervision of clients’ exercises and reduce clients’ need for visiting physiotherapists in person. However, development of a marker-less motion analysis system with precise accuracy for joint identification, joint angle measurements and advanced motion analysis is an open challenge. Objectives: The main objective of this paper is to provide a critical overview of recent computer vision-based marker-less human pose estimation systems and their applicability for rehabilitation application. An overview of some existing marker-less rehabilitation applications is also provided. Methods: This paper presents a critical review of recent computer vision-based marker-less human pose estimation systems with focus on their provided joint localization accuracy in comparison to physiotherapy requirements and ease of use. The accuracy, in terms of the capability to measure the knee angle, is analysed using simulation. Results: Current pose estimation systems use 2D, 3D, multiple and single view-based techniques. The most promising techniques from a physiotherapy point of view are 3D marker-less pose estimation based on a single view as these can perform advanced motion analysis of the human body while only requiring a single camera and a computing device. Preliminary simulations reveal that some proposed systems already provide a sufficient accuracy for 2D joint angle estimations. Conclusions: Even though test results of different applications for some proposed techniques are promising, more rigour testing is required for validating their accuracy before they can be widely adopted in advanced rehabilitation applications.


Author(s):  
Bappaditya Debnath ◽  
Mary O’Brien ◽  
Motonori Yamaguchi ◽  
Ardhendu Behera

AbstractThe computer vision community has extensively researched the area of human motion analysis, which primarily focuses on pose estimation, activity recognition, pose or gesture recognition and so on. However for many applications, like monitoring of functional rehabilitation of patients with musculo skeletal or physical impairments, the requirement is to comparatively evaluate human motion. In this survey, we capture important literature on vision-based monitoring and physical rehabilitation that focuses on comparative evaluation of human motion during the past two decades and discuss the state of current research in this area. Unlike other reviews in this area, which are written from a clinical objective, this article presents research in this area from a computer vision application perspective. We propose our own taxonomy of computer vision-based rehabilitation and assessment research which are further divided into sub-categories to capture novelties of each research. The review discusses the challenges of this domain due to the wide ranging human motion abnormalities and difficulty in automatically assessing those abnormalities. Finally, suggestions on the future direction of research are offered.


Author(s):  
Abd El Rahman Shabayek ◽  
Olivier Morel ◽  
David Fofi

For long time, it was thought that the sensing of polarization by animals is invariably related to their behavior, such as navigation and orientation. Recently, it was found that polarization can be part of a high-level visual perception, permitting a wide area of vision applications. Polarization vision can be used for most tasks of color vision including object recognition, contrast enhancement, camouflage breaking, and signal detection and discrimination. The polarization based visual behavior found in the animal kingdom is briefly covered. Then, the authors go in depth with the bio-inspired applications based on polarization in computer vision and robotics. The aim is to have a comprehensive survey highlighting the key principles of polarization based techniques and how they are biologically inspired.


Author(s):  
Luis Payá ◽  
Oscar Reinoso ◽  
David Úbeda ◽  
Luis M. Jiménez ◽  
José M. Marín

In this chapter the authors approach the problem that hand-on experiments may present in engineering studies and how Internet has become a powerful tool to improve the students’ motivation, interaction and degree of learning. Also, the authors address some challenges that must be taken into account in order to improve the effectiveness of the remote laboratories. They have implemented an interactive tool so that students can monitor and control the evolution of a team of mobile robots through Internet. This platform is designed for a subject whose contents are computer vision and robotics, and it allows students to learn and practice the basic concepts on those fields and their relationship. In this chapter they present the architecture and basic features of the platform and the experiences collected during the use of it.


Author(s):  
Nagadevi Darapureddy ◽  
Muralidhar Kurni ◽  
Saritha K.

Artificial intelligence (AI) refers to science-generating devices with functions like reasoning, thinking, learning, and planning. A robot is an intelligent artificial machine capable of sensing and interacting with its environment utilizing integrated sensors or computer vision. In the present day, AI has become a more familiar presence in robotic resolutions, introducing flexibility and learning capabilities. A robot with AI provides new opportunities for industries to produce work safer, save valuable time, and increase productivity. Economic impact assessment and awareness of the social, legal, and ethical problems of robotics and AI are essential to optimize the advantages of these innovations while minimizing adverse effects. The impact of AI and robots affects healthcare, manufacturing, transport, and jobs in logistics, security, retail, agri-food, and construction. The chapter outlines the vision of AI, robot's timeline, highlighting robot's limitations, hence embedding AI to robotic real-world applications to get an optimized solution.


2013 ◽  
Vol 21 (1) ◽  
Author(s):  
W. Skarbek ◽  
M. Tomaszewski

AbstractIn the literature of computer vision, computer graphics and robotics, the use of quaternions is exclusively related to 3D rotation representation and interpolation. In this research we found how epipoles in multi-camera systems can be used to represent camera poses in the quaternion domain. The rotational quaternion is decomposed in two epipole rotational quaternions and one z axis rotational quaternion. Quadratic form of the essential matrix is also related to quaternion factors. Thus, five pose parameters are distributed into three independent rotational quaternions resulting in measurement error separation at camera pose identification and greater flexibility at virtual camera animation. The experimental results refer to the design of free viewpoint television.


Sign in / Sign up

Export Citation Format

Share Document