scholarly journals Analysis of thin-walled beams with variable monosymmetric cross section by means of Legendre polynomials

2019 ◽  
Vol 41 (1) ◽  
pp. 1-12
Author(s):  
Józef Szybiński ◽  
Piotr Ruta

AbstractThis article deals with the vibrations of a nonprismatic thin-walled beam with an open cross section and any geometrical parameters. The thin-walled beam model presented in this article was described using the membrane shell theory, whilst the equations were derived based on the Vlasov theory assumptions. The model is a generalisation of the model presented by Wilde (1968) in ‘The torsion of thin-walled bars with variable cross-section’, Archives of Mechanics, 4, 20, pp. 431–443. The Hamilton principle was used to derive equations describing the vibrations of the beam. The equations were derived relative to an arbitrary rectilinear reference axis, taking into account the curving of the beam axis and the axis formed by the shear centres of the beam cross sections. In most works known to the present authors, the equations describing the nonprismatic thin-walled beam vibration problem do not take into account the effects stemming from the curving (the inclination of the walls of the thin-walledcross section towards to the beam axis) of the analysed systems. The recurrence algorithm described in Lewanowicz’s work (1976) ‘Construction of a recurrence relation of the lowest order for coefficients of the Gegenbauer series’, Applicationes Mathematicae, XV(3), pp. 345–396, was used to solve the derived equations with variable coefficients. The obtained solutions of the equations have the form of series relative to Legendre polynomials. A numerical example dealing with the free vibrations of the beam was solved to verify the model and the effectiveness of the presented solution method. The results were compared with the results yielded by finite elements method (FEM).

1994 ◽  
Vol 2 (4) ◽  
pp. 345-357 ◽  
Author(s):  
James F. Wilson ◽  
Byoung Koo Lee ◽  
Sang Jin Oh

2019 ◽  
Vol 81 (4) ◽  
pp. 449-460
Author(s):  
V.V. Saurin

Issues related to eigen-vibrations of elastic beams of variable cross-section are discussed. It is noted that one of the common features characteristic of boundary-value problems of mathematical physics is certain ambiguity of their formulations. A boundary-value problem of determining eigen-frequencies of a variable cross-section beam in displacements is formulated. By introducing new variables characterizing the behavior of the system, the boundary-value problem is reduced to three ordinary differential equations with variable coefficients. The new variables have a distinct physical meaning. One of the functions is linear density of the pulse and the other is bending moment in the cross-section of the beam. Such a formulation of the problem of free vibrations of a variable cross-section beam makes it possible to reduce the system of differential equations to a single fourth-order equation written in terms of pulse functions. This equation is equivalent to the initial one, formulated in displacements, but has a different form. A method of integral-differential relations, alternative to classical numerical approaches, is described. The possibility of constructing various bilateral energy-based evaluations of the accuracy of approximate solutions resulting from the method of integral-differential relations is studied. The projection approach to analyzing spectral problems of nonlinear beam theory is considered. The efficiency of the method of integral-differential equations is demonstrated, using the problem of free vibrations of a rectangular beam with a constructional depth quadratically varying along its length. Energy-based evaluations of the accuracy of the approximate solutions constructed using polynomial approximations of the sought functions are presented. It is shown that applying standard Bubnov-Galerkin's method to the problem of free vibrations leads to the appearance of complex eigen-frequencies. At the same time, the ratio of the imaginary component to the real one of the eigen-value is a relative inaccuracy of the solution of the boundary-value problem. The introduced numerical algorithm makes it possible to evaluate unambiguously the local and integral quality of numerical solutions obtained.


Sign in / Sign up

Export Citation Format

Share Document