scholarly journals Detection of Changes in Hydrological Time Series During Recent Decades

2020 ◽  
Vol 28 (2) ◽  
pp. 56-62
Author(s):  
Mária Ďurigová ◽  
Kamila Hlavčová ◽  
Jana Poórová

AbstractAn analysis of a hydrological time-series data offers the possibility of detecting changes that have arisen due to climate change or change in land use. This paper deals with the detection of changes in the hydrological time data series. The trend analysis was applied at 58 stage-discharge gauging stations that are located throughout Slovakia, with the measurement period from 1962 to 2017. The Mann-Kendall test show a declining trends in the summer and a few rising trends in the winter in discharges. In the town of Banská Bystrica at a station on the Hron River, decades of discharges, air temperatures, and precipitation totals were analyzed. The five decades from the 1960s to the 2000s were used. The hydrological time data series were also analyzed by the Pettitt’s test, which is used to detect change points. The decadal analysis at the Banská Bystrica station shows an increase in the air temperature but insignificant changes in discharges and precipitation. Pettitt’s test identified many change points in the 1990s in the air temperature.

2022 ◽  
Vol 24 (1) ◽  
Author(s):  
BALJEET KAUR ◽  
NAVNEET KAUR ◽  
K. K. GILL ◽  
JAGJEEVAN SINGH ◽  
S. C. BHAN ◽  
...  

The long-term air temperature data series from 1971-2019 was analyzed and used for forecasting mean monthly air temperature at the district level. The Augmented Dickey-Fuller test, Kwiatkowski-Phillips-Schmidt-Shin test, and Mann-Kendall test were employed to test the stationarity and trend of the time series. The mean monthly maximum air temperature did not show any significant variation while an increasing trend of 0.04°C per annum was observed in mean monthly minimum air temperature, which was detrended. Box-Jenkins autoregressive integrated moving–averages were used to forecast the forthcoming 5 years (2020-2024) air temperature in the district Jalandhar of Punjab. The goodness of fit was tested against residuals, the autocorrelation function, and the histogram. The fitted model was able to capture dynamics of the time series data and produce a sensible forecast.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1633
Author(s):  
Elena-Simona Apostol ◽  
Ciprian-Octavian Truică ◽  
Florin Pop ◽  
Christian Esposito

Due to the exponential growth of the Internet of Things networks and the massive amount of time series data collected from these networks, it is essential to apply efficient methods for Big Data analysis in order to extract meaningful information and statistics. Anomaly detection is an important part of time series analysis, improving the quality of further analysis, such as prediction and forecasting. Thus, detecting sudden change points with normal behavior and using them to discriminate between abnormal behavior, i.e., outliers, is a crucial step used to minimize the false positive rate and to build accurate machine learning models for prediction and forecasting. In this paper, we propose a rule-based decision system that enhances anomaly detection in multivariate time series using change point detection. Our architecture uses a pipeline that automatically manages to detect real anomalies and remove the false positives introduced by change points. We employ both traditional and deep learning unsupervised algorithms, in total, five anomaly detection and five change point detection algorithms. Additionally, we propose a new confidence metric based on the support for a time series point to be an anomaly and the support for the same point to be a change point. In our experiments, we use a large real-world dataset containing multivariate time series about water consumption collected from smart meters. As an evaluation metric, we use Mean Absolute Error (MAE). The low MAE values show that the algorithms accurately determine anomalies and change points. The experimental results strengthen our assumption that anomaly detection can be improved by determining and removing change points as well as validates the correctness of our proposed rules in real-world scenarios. Furthermore, the proposed rule-based decision support systems enable users to make informed decisions regarding the status of the water distribution network and perform effectively predictive and proactive maintenance.


2020 ◽  
Vol 12 (17) ◽  
pp. 2735 ◽  
Author(s):  
Carlos M. Souza ◽  
Julia Z. Shimbo ◽  
Marcos R. Rosa ◽  
Leandro L. Parente ◽  
Ane A. Alencar ◽  
...  

Brazil has a monitoring system to track annual forest conversion in the Amazon and most recently to monitor the Cerrado biome. However, there is still a gap of annual land use and land cover (LULC) information in all Brazilian biomes in the country. Existing countrywide efforts to map land use and land cover lack regularly updates and high spatial resolution time-series data to better understand historical land use and land cover dynamics, and the subsequent impacts in the country biomes. In this study, we described a novel approach and the results achieved by a multi-disciplinary network called MapBiomas to reconstruct annual land use and land cover information between 1985 and 2017 for Brazil, based on random forest applied to Landsat archive using Google Earth Engine. We mapped five major classes: forest, non-forest natural formation, farming, non-vegetated areas, and water. These classes were broken into two sub-classification levels leading to the most comprehensive and detailed mapping for the country at a 30 m pixel resolution. The average overall accuracy of the land use and land cover time-series, based on a stratified random sample of 75,000 pixel locations, was 89% ranging from 73 to 95% in the biomes. The 33 years of LULC change data series revealed that Brazil lost 71 Mha of natural vegetation, mostly to cattle ranching and agriculture activities. Pasture expanded by 46% from 1985 to 2017, and agriculture by 172%, mostly replacing old pasture fields. We also identified that 86 Mha of the converted native vegetation was undergoing some level of regrowth. Several applications of the MapBiomas dataset are underway, suggesting that reconstructing historical land use and land cover change maps is useful for advancing the science and to guide social, economic and environmental policy decision-making processes in Brazil.


2015 ◽  
Vol 63 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Khnd Md Mostafa Kamal

Currency exchange rate is an important aspect in modern economy which indicates the strength of domestic currency with respect to international currency. This study uses 42 years’ (1972 to 2013) time series data for Bangladesh in order to empirically determine whether the real exchange rate has significant impact on output growth for Bangladesh by using error correction model (ECM).The time series econometrics properties of the data series have been thoroughly investigated to apply ECM approach. The empirical evidence suggests mixed results; in the short run low exchange rate has positive significant effect while in the long run output growth is positively affected high exchange rate pass through.Dhaka Univ. J. Sci. 63(2):105-110, 2015 (July)


2017 ◽  
Vol 10 (2) ◽  
pp. 145-165 ◽  
Author(s):  
Kehe Wu ◽  
Yayun Zhu ◽  
Quan Li ◽  
Ziwei Wu

Purpose The purpose of this paper is to propose a data prediction framework for scenarios which require forecasting demand for large-scale data sources, e.g., sensor networks, securities exchange, electric power secondary system, etc. Concretely, the proposed framework should handle several difficult requirements including the management of gigantic data sources, the need for a fast self-adaptive algorithm, the relatively accurate prediction of multiple time series, and the real-time demand. Design/methodology/approach First, the autoregressive integrated moving average-based prediction algorithm is introduced. Second, the processing framework is designed, which includes a time-series data storage model based on the HBase, and a real-time distributed prediction platform based on Storm. Then, the work principle of this platform is described. Finally, a proof-of-concept testbed is illustrated to verify the proposed framework. Findings Several tests based on Power Grid monitoring data are provided for the proposed framework. The experimental results indicate that prediction data are basically consistent with actual data, processing efficiency is relatively high, and resources consumption is reasonable. Originality/value This paper provides a distributed real-time data prediction framework for large-scale time-series data, which can exactly achieve the requirement of the effective management, prediction efficiency, accuracy, and high concurrency for massive data sources.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Yufeng Yu ◽  
Yuelong Zhu ◽  
Shijin Li ◽  
Dingsheng Wan

In order to detect outliers in hydrological time series data for improving data quality and decision-making quality related to design, operation, and management of water resources, this research develops a time series outlier detection method for hydrologic data that can be used to identify data that deviate from historical patterns. The method first built a forecasting model on the history data and then used it to predict future values. Anomalies are assumed to take place if the observed values fall outside a given prediction confidence interval (PCI), which can be calculated by the predicted value and confidence coefficient. The use ofPCIas threshold is mainly on the fact that it considers the uncertainty in the data series parameters in the forecasting model to address the suitable threshold selection problem. The method performs fast, incremental evaluation of data as it becomes available, scales to large quantities of data, and requires no preclassification of anomalies. Experiments with different hydrologic real-world time series showed that the proposed methods are fast and correctly identify abnormal data and can be used for hydrologic time series analysis.


2014 ◽  
Vol 6 (1) ◽  
Author(s):  
Miguel García ◽  
José Alloza ◽  
Ángeles Mayor ◽  
Susana Bautista ◽  
Francisco Rodríguez

AbstractModerate resolution remote sensing data, as provided by MODIS, can be used to detect and map active or past wildfires from daily records of suitable combinations of reflectance bands. The objective of the present work was to develop and test simple algorithms and variations for automatic or semiautomatic detection of burnt areas from time series data of MODIS biweekly vegetation indices for a Mediterranean region. MODIS-derived NDVI 250m time series data for the Valencia region, East Spain, were subjected to a two-step process for the detection of candidate burnt areas, and the results compared with available fire event records from the Valencia Regional Government. For each pixel and date in the data series, a model was fitted to both the previous and posterior time series data. Combining drops between two consecutive points and 1-year average drops, we used discrepancies or jumps between the pre and post models to identify seed pixels, and then delimitated fire scars for each potential wildfire using an extension algorithm from the seed pixels. The resulting maps of the detected burnt areas showed a very good agreement with the perimeters registered in the database of fire records used as reference. Overall accuracies and indices of agreement were very high, and omission and commission errors were similar or lower than in previous studies that used automatic or semiautomatic fire scar detection based on remote sensing. This supports the effectiveness of the method for detecting and mapping burnt areas in the Mediterranean region.


Sign in / Sign up

Export Citation Format

Share Document