scholarly journals Kummer Theory for Number Fields and the Reductions of Algebraic Numbers II

2020 ◽  
Vol 15 (1) ◽  
pp. 75-92 ◽  
Author(s):  
Antonella Perucca ◽  
Pietro Sgobba

AbstractLet K be a number field, and let G be a finitely generated and torsion-free subgroup of K×. For almost all primes p of K, we consider the order of the cyclic group (G mod 𝔭), and ask whether this number lies in a given arithmetic progression. We prove that the density of primes for which the condition holds is, under some general assumptions, a computable rational number which is strictly positive. We have also discovered the following equidistribution property: if ℓe is a prime power and a is a multiple of ℓ (and a is a multiple of 4 if ℓ =2), then the density of primes 𝔭 of K such that the order of (G mod 𝔭) is congruent to a modulo ℓe only depends on a through its ℓ-adic valuation.

2019 ◽  
Vol 15 (08) ◽  
pp. 1617-1633 ◽  
Author(s):  
Antonella Perucca ◽  
Pietro Sgobba

For all number fields the failure of maximality for the Kummer extensions is bounded in a very strong sense. We give a direct proof (without relying on the Bashmakov–Ribet method) of the fact that if [Formula: see text] is a finitely generated and torsion-free multiplicative subgroup of a number field [Formula: see text] having rank [Formula: see text], then the ratio between [Formula: see text] and the Kummer degree [Formula: see text] is bounded independently of [Formula: see text]. We then apply this result to generalize to higher rank a theorem of Ziegler from 2006 about the multiplicative order of the reductions of algebraic integers (the multiplicative order must be in a given arithmetic progression, and an additional Frobenius condition may be considered).


1960 ◽  
Vol 16 ◽  
pp. 73-81
Author(s):  
Hideo Yokoi

In this note, we denote by Q the rational number field, by EΩ the whole unit group of an arbitrary number field Ω of finite degree, and by rΩ the rank of where generally G* for an arbitrary abelian group G means a maximal torsion-free subgroup of G. (NK/ΩEK)* is shortly denoted by and (G1 : G2) is, as usual, the index of a subgroup G2 in G1.


Author(s):  
Benson Farb ◽  
Dan Margalit

This chapter discusses the basic properties and applications of a symplectic representation, denoted by Ψ‎, and its kernel, called the Torelli group. After describing the algebraic intersection number as a symplectic form, the chapter presents three different proofs of the surjectivity of Ψ‎, each illustrating a different theme. It also illustrates the usefulness of the symplectic representation by two applications to understanding the algebraic structure of Mod(S). First, the chapter explains how this representation is used by Serre to prove the theorem that Mod(Sɡ) has a torsion-free subgroup of finite index. It thens uses the symplectic representation to prove, following Ivanov, the following theorem of Grossman: Mod(Sɡ) is residually finite. It also considers some of the pioneering work of Dennis Johnson on the Torelli group. In particular, a Johnson homomorphism is constructed and some of its applications are given.


2014 ◽  
Vol 79 (01) ◽  
pp. 45-53
Author(s):  
ANNALISA CONVERSANO

Abstract Let ${\cal N}\left( G \right)$ be the maximal normal definable torsion-free subgroup of a group G definable in an o-minimal structure M. We prove that the quotient $G/{\cal N}\left( G \right)$ has a maximal definably compact subgroup K, which is definably connected and unique up to conjugation. Moreover, we show that K has a definable torsion-free complement, i.e., there is a definable torsion-free subgroup H such that $G/{\cal N}\left( G \right) = K \cdot H$ and $K\mathop \cap \nolimits^ \,H = \left\{ e \right\}$ . It follows that G is definably homeomorphic to $K \times {M^s}$ (with $s = {\rm{dim}}\,G - {\rm{dim}}\,K$ ), and homotopy equivalent to K. This gives a (definably) topological reduction to the compact case, in analogy with Lie groups.


1995 ◽  
Vol 06 (03) ◽  
pp. 337-370 ◽  
Author(s):  
FRITZ GRUNEWALD ◽  
ULRICH HIRSCH

Let [Formula: see text] be a torsion-free subgroup acting discontinuously on 3-dimensional hyperbolic space [Formula: see text]. Assume further that Γ\ℍ3 has finite hyperbolic volume. The quotient-space Γ\ℍ3 is then a 3-manifold which can be compactified by the addition of finitely many 2-tori. This paper discusses a procedure which decides whether Γ\ℍ3 is homeomorphic to the complement of a link in S3. We apply our procedure to subgroups of low index in [Formula: see text], where [Formula: see text] is the ring of integers in [Formula: see text]. As a result we find new link complements having a complete hyperbolic structure coming from an arithmetic group. Finally we prove that up to conjugacy there are only finitely many commensurability classes of arithmetic subgroups [Formula: see text] so that Γ\ℍ3 is homeomorphic to the complement of a link in S3.


Author(s):  
Antonella Perucca ◽  
Pietro Sgobba ◽  
Sebastiano Tronto
Keyword(s):  

Author(s):  
Chien-Hua Chen

In this paper, we formulate the Drinfeld module analogue of a question raised by Lang and studied by Katz on the existence of rational points on abelian varieties over number fields. Given a maximal ideal [Formula: see text] of [Formula: see text], the question essentially asks whether, up to isogeny, a Drinfeld module [Formula: see text] over [Formula: see text] contains a rational [Formula: see text]-torsion point if the reduction of [Formula: see text] at almost all primes of [Formula: see text] contains a rational [Formula: see text]-torsion point. Similar to the case of abelian varieties, we show that the answer is positive if the rank of the Drinfeld module is 2, but negative if the rank is 3. Moreover, for rank 3 Drinfeld modules we classify those cases where the answer is positive.


2014 ◽  
Vol 10 (08) ◽  
pp. 1921-1927 ◽  
Author(s):  
Winfried Kohnen ◽  
Yves Martin

Let f be an even integral weight, normalized, cuspidal Hecke eigenform over SL2(ℤ) with Fourier coefficients a(n). Let j be a positive integer. We prove that for almost all primes p the sequence (a(pjn))n≥0 has infinitely many sign changes. We also obtain a similar result for any cusp form with real Fourier coefficients that provide the characteristic polynomial of some generalized Hecke operator is irreducible over ℚ.


Author(s):  
B. Zimmermann

We present a closed hyperbolic 3-manifold M with some surprising properties. The universal covering group of M is a normal torsion-free subgroup of minimal index in one of the nine Coxeter groups G, generated by the reflections in the faces of one of the nine Lannér-tetrahedra (bounded tetrahedra in hyperbolic 3-space all of whose dihedral angles are of the form π/n with n ∈ ℕ see [1] or [3]). The corresponding Coxeter group G splits as a semidirect product G = π1M⋉A, where A is a finite subgroup of G, and G is the only one of the nine Coxeter groups associated to the Lannér-tetrahedra which admits such a splitting (this follows using results in [4]). We derive a presentation of π1M and show that the first homology group H1(M) of M is isomorphic to ℚ11. This is in sharp contrast to other torsion-free (non-normal) subgroups of finite index in Coxeter groups constructed in [1] which all have finite first homology (though it is known that they are all virtually ℚ-representable (see [5], p. 434). It follows from our computations that the Heegaard genus of M is 11, and that there exists a Heegaard splitting of M of genus 11 invariant under the action of the group I+(M) ≌ S5 ⊕ ℚ2 of orientation-preserving isometries of M (we compute this group in [4]), so that the Heegaard genus of M is equal to the equivariant Heegaard genus of the action of I+(M) on M. Moreover M is maximally symmetric in the sense of [4, 6]: the order 120 of the subgroup of index 2 in I+(M) which preserves both handle-bodies of the Heegaard splitting is the maximal possible order of a group of orientation-preserving diffeomorphisms of a handle-body of genus 11. (This maximal order is 12(g—1) for a handle-body of genus g; see [7].) By taking the coverings Mq of M corresponding to the surjections π1M→H1(M) ≌ ℚ11→(ℚq)11 for q ∈ ℕ, we obtain explicitly an infinite series of maximally symmetric hyperbolic 3-manifolds.


Sign in / Sign up

Export Citation Format

Share Document