scholarly journals Dynamic positioning system design for “blue lady”. simulation tests

2012 ◽  
Vol 19 (Special) ◽  
pp. 57-65 ◽  
Author(s):  
Mirosław Tomera

ABSTRACT The dynamical positioning system is a complex control consisting of a number of components, including: filters, observers, controllers, and propeller allocation systems. The design and preliminary analysis of operational quality of system operation are usually done based on numerical simulations performed with the aid of the mathematical model of the ship. The article presents a concept of the dynamic positioning system applied to steering the training ship Blue Lady used for training captains in the ship handling research and training centre owned by the Foundation for Safety of Navigation and Environment Protection in Ilawa/Kamionka. The simulation tests performed in the numerical environment of Matlab/Simulink have proved the usability of the designed system for steering a ship at low speed.

2014 ◽  
Vol 926-930 ◽  
pp. 1505-1508
Author(s):  
Bao Yu Ye ◽  
Xiong Fei Huang ◽  
Fang Zhu ◽  
Chuan Sheng Liu

According to the characteristics of ship dynamic positioning system, internal model controller is presented based on the mathematical model of ship dynamic positioning system. First, first-order internal model controller is designed in the surge motion. Then, aiming at the coupling characteristics on the movement of sway and yaw, decoupling internal model controller is designed. Simulation results show that the designed controller is effective for the dynamic positioning of ships.


2014 ◽  
Vol 21 (3) ◽  
pp. 13-24 ◽  
Author(s):  
Mirosław Tomera

Abstract In cases when the navigational space of the manoeuvre performed by the ship is severely limited, the procedures making use of the rudder blade, propeller screw, and thrusters are very complicated. Such situations take place when the ship manoeuvres inside the harbour area and in those cases the structure of the control system is very complex. Te article describes the algorithm of multivariable control of ship motion over the water surface, which makes use of the state vector consisting of 6 variables. Tree of them, which are the position coordinates (x, y) measured by the DGPS system and the ship heading y measured by gyro-compass, were obtained experimentally. Te three remaining variables, which are the velocities in surge u, sway v, and yaw r directions, were estimated by Kalman filter, Kalman-Bucy filter and extended Kalman flter, respectively. The control algorithms making use of these observers were examined using the training ship “Blue Lady” which was navigated on the lake Silm in Ilawa/Kamionka in the Ship Handling Research and Training Centre owned by the Foundation for Safety of Navigation and Environment Protection. Te experimental results obtained using control systems with three observers were finally compared between each other.


2014 ◽  
Vol 919-921 ◽  
pp. 2127-2130
Author(s):  
Pei Wen Yu ◽  
Hui Chen

The paper presents a method to build MMG model of ship motion for a oil supply vessel (OSV) with dynamic positioning system. It is assumed that the ship motion exposed to environment disturbances like wind, wave & currents, The simulation results show that the model of the vessel and environment disturbances are suitable, and the method is practicable .


2019 ◽  
Vol 26 (1) ◽  
pp. 6-14 ◽  
Author(s):  
Tacjana Niksa Rynkiewicz ◽  
Anna Witkowska

Abstract In this work there is presented an analysis of impact of ship model parameters on changes of control quality index in a ship dynamic positioning system designed with the use of a backstepping adaptive controller. Assessment of the impact of ship model parameters was performed on the basis of Pareto-Lorentz curves and ABC method in order to determine sets of the parameters which have either crucial, moderate or low impact on objective function. Simulation investigations were carried out with taking into account integral control quality indices.


Author(s):  
Agoes Santoso ◽  
Juniarko Prananda ◽  
Amiadji Amiadji ◽  
Edi Jadmiko ◽  
Izzu Alfaris Murtadha

Sign in / Sign up

Export Citation Format

Share Document