scholarly journals Powdery Mildew Resistance of the Lithuanian Winter Wheat Breeding Material

Author(s):  
Žilvinas Liatukas ◽  
Vytautas Ruzgas

Powdery Mildew Resistance of the Lithuanian Winter Wheat Breeding Material At the Lithuanian Institute of Agriculture, during 2004-2006, resistance to powdery mildew of approximately 1,500 winter wheat lines was assessed in check and competitive trial nurseries. Our experimental evidence showed that there were no genotypes with effective resistance singlegenes among the lines tested. Effective powdery mildew resistance from start to end of vegetation season depended on the quantitative resistance level. The most resistant lines were evaluated with a score of 2 and area under the disease progress curve (AUDPC) values ranging between 1.0-5.4. The most susceptible genotypes from the collection nurseries had score 8-9 and AUDPC values ranging between 1350-2220. The correlations between maximal disease severity and AUDPC values were strong (r = 0.79-0.92). Genotypes with AUDPC values up to 10 represented 93 lines or 7% in the check trial nursery and 22 lines or 9% in the competitive trial nursery. Lines evaluated with a score 4-5 and AUDPC value 100-300 dominated in 2004. In the next year the dominant genotypes had resistance scores 3-4 and AUDPC value 50-200. The highest powdery mildew resistance (score 2 and AUDPC value 1.0) was identified for the lines Maverich/Victo, Flair/Lut.9392, Strumok/Lut.9321, Zentos/Lut.97-6, Strumok/Lut.9313, Dirigent/Cortez in 2006.

Plant Disease ◽  
2021 ◽  
Author(s):  
Wenrui Wang ◽  
Huagang He ◽  
Huiming Gao ◽  
Hongxing Xu ◽  
Wenyue Song ◽  
...  

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is a destructive disease seriously threatening yield and quality of common wheat (Triticum aestivum L., 2n=6x=42, AABBDD). Characterization of resistance genes against powdery mildew is useful in parental selection and for developing disease resistant cultivars. Chinese wheat breeding line KN0816 has superior agronomic performance and resistance to powdery mildew at all growth stages. Genetic analysis using populations of KN0816 crossed with different susceptible parents indicated that a single dominant gene, tentatively designated PmKN0816, conferred seedling resistance to different Bgt isolates. Using a bulked segregant analysis (BSA), PmKN0816 was mapped to the Pm6 interval on chromosome arm 2BL using polymorphic markers linked to the catalogued genes Pm6, Pm52, and Pm64, and flanked by markers CISSR02g-6 and CIT02g-2 both with genetic distances of 0.7 cM. Analysis of closely linked molecular markers indicated that the marker alleles of PmKN0816 differed from those of other powdery mildew resistance genes on 2BL, including Pm6, Pm33, Pm51, Pm64, and PmQ. Based on the genetic and physical locations and response pattern to different Bgt isolates, PmKN0816 is most likely a new powdery mildew resistance gene and confers effective resistance to all the 14 tested Bgt isolates. In view of the elite agronomic performance of KN0816 combined with the resistance, PmKN0816 is expected to become a valuable resistance gene in wheat breeding. To transfer PmKN0816 to different genetic backgrounds using marker-assisted selection (MAS), closely linked markers of PmKN0816 were evaluated and four of them (CIT02g-2, CISSR02g-6, CIT02g-10, and CIT02g-17) were confirmed to be applicable for MAS in different genetic backgrounds.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2645-2651 ◽  
Author(s):  
Yanmin Qie ◽  
Yuan Sheng ◽  
Hongxing Xu ◽  
Yuli Jin ◽  
Feifei Ma ◽  
...  

Chinese wheat landrace Dahongtou was resistant to 35 of 38 tested Chinese isolates of Blumeria graminis f. sp. tritici at the seedling stage. Genetic analysis of the F2 populations and their derived F2:3 families of crosses of Dahongtou with the susceptible varieties Mingxian 169 and Huixianhong indicated that the resistance of Dahongtou to B. graminis f. sp. tritici isolate E09 was conferred by a single recessive gene, tentatively designated as pmDHT. The gene was mapped to chromosome arm 7BL and flanked by markers Xwmc526/XBE443877 and Xgwm611/Xwmc511 at genetic distances of 0.8 and 0.3 cM, respectively. The chromosomal position of pmDHT was similar to the multi-allelic Pm5 locus on 7BL. Allelism tests with crosses of Dahongtou with Fuzhuang 30 (Pm5e) and Xiaobaidong (mlxbd) indicated that pmDHT was allelic to both Pm5e and mlxbd. However, pmDHT showed a different pattern of resistance to the 38 B. graminis f. sp. tritici isolates compared with wheat lines with Pm5a, Pm5b, Pm5e, mlxbd, and PmHYM and also differed from PmSGA. Thus, pmDHT was identified most likely as a new allele or at least a closely linked gene of the Pm5 locus. This gene can be transferred into susceptible wheat cultivars/lines and pyramided with other resistance genes through marker-assisted selection to improve powdery mildew resistance.


2014 ◽  
Vol 128 (2) ◽  
pp. 303-312 ◽  
Author(s):  
Stine Petersen ◽  
Jeanette H. Lyerly ◽  
Margaret L. Worthington ◽  
Wesley R. Parks ◽  
Christina Cowger ◽  
...  

2021 ◽  
Author(s):  
Mateusz Maksymilian Dyda ◽  
Mirosław Tyrka ◽  
Gabriela Gołębiowska ◽  
Marcin Rapacz ◽  
Maria Wędzony

Abstract Triticale is a cereal of high economic importance, however along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper we present a new, high-density genetic map of triticale doubled haploids (DH) population ‘Grenado’ x ‘Zorro’ composed of DArT, silicoDArT and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.


Sign in / Sign up

Export Citation Format

Share Document