resistance level
Recently Published Documents


TOTAL DOCUMENTS

530
(FIVE YEARS 198)

H-INDEX

34
(FIVE YEARS 7)

2023 ◽  
Vol 83 ◽  
Author(s):  
Z. Javed ◽  
M. S. Asim ◽  
A. R. Ishaq ◽  
T. Younis ◽  
M. Manzoor ◽  
...  

Abstract Development of insecticides resistance mainly hinge with managements techniques for the control of Jassid, Amrasca biguttutla biguttutla. Five insecticides were applied against field collected and laboratory rared jassid populations during the years of 2017 to 2019 to profile their resistance level against field population of jassid through leaf dip method. Very low resistance level was found in jassid against confidor whereas high level of resistance was observed by pyriproxyfen against other test insecticides. Gradual resistance was observed against diafenthiuron. It is concluded that for the management of Jassid repetition of same insecticide should be avoided. The use of confidor may be reduced to overcome resistance against Jassid.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261090
Author(s):  
Muhammad Umair Sial ◽  
Khalid Mehmood ◽  
Shafqat Saeed ◽  
Mureed Husain ◽  
Khawaja Ghulam Rasool ◽  
...  

Green peach aphid [Myzus persicae (Sulzer) (Hemiptera: Aphididae)] is a significant pest with a known history of insecticide resistance. Neonicotinoids could manage this pest; however, their frequent use led to the evolution of resistance in field populations of M. persicae. Toxicity data for neonicotinoid insecticides synergized with pipernyl butoxide (PBO) in a field population (FP) were collected and compared to a laboratory susceptible clone (SC) of aphids. The enhanced expression of metabolic resistance-related cytochrome P450 gene CYP6CY3 and an arginine-threonine substitution were detected in FP, causing a single point mutation (R81T) at β1 subunit of nicotinic acetylcholine receptor (nAChR) within D loop. High level of resistance to imidacloprid was developed in FP with 101-fold resistance ratio and moderate resistance level (10.9-fold) to acetamiprid. The results of PBO synergized bioassay suggested that cytochrome P450 enzymes were involved in the resistance to neonicotinoids. The mRNA transcriptional level of CYP6CY3 gene was significantly higher (3.74 fold) in FP compared to SC. The R81T mutation associated with neonicotinoid resistance had 26% resistant allele frequency in FP. Both P450 enzymes and R81T mutation of nAChR were found in field-evolved neonicotinoid resistance. It is concluded that field-evolved resistance in green peach aphid could be managed by using appropriate synergists such as PBO.


Author(s):  
Emine Açar ◽  
Melike Cengiz ◽  
Yıldız Aka Kaçar ◽  
Ahsen Işık Özgüven

Pomegranate (Punica granatum L.) is a tropical and subtropical climate plant with high economic value and nutritional content. Having valuable phytochemicals in terms of health caused an increase in demand for pomegranate consumption and this situation accelerated pomegranate production. However, global warming and climate changes are among the factors limiting the production of pomegranate. Especially abiotic stress factors caused by adverse ecological conditions cause significant economic losses in pomegranate production. Drought stress, which is one of these negativities, causes fruit cracking problem, which is one of the important problems in pomegranate production. Minimizing the fruit cracking problem, which causes economic losses, is possible by breeding varieties that are resistant to under non-irrigated conditions. Determining the resistance of the cultivars to be used in breeding programs against fruit cracking will allow the development of elite cultivars. For this purpose, it was aimed to determine the fruit cracking rates of 30 different pomegranate genotypes in the Pomegranate Genetic Collection of Çukurova University, Faculty of Agriculture, Department of Horticulture, under non-irrigated conditions. A correlation was made between the cracking rates of the genotypes and the amount of soluble solids content (SSC). According to the correlation analysis between the cultivars, there is no statistically significant difference between the SSC and the cracking rate. However, a weak negative correlation was determined between SSC-cracking rate (-0,1132). In the light of the pomological data obtained, it was determined that 8 pomegranate genotypes grown under non-irrigated conditions had a fruit cracking rate of 40 % - 85 %, cracking rates were below 10 % in 8 pomegranate genotypes and no fruit cracking was observed in 6 genotypes. As a result of the analysis, it was observed that drought stress was effective on the fruit cracking rate or the exacerbation of the fruit cracking rate, but the resistance level of some genotypes against the fruit cracking problem was high.


2022 ◽  
Author(s):  
Rebekah J Kukurudz ◽  
Madison Chapel ◽  
Quinn Wonitowy ◽  
Abdul-Rahman Adamu Bukari ◽  
Brooke Sidney ◽  
...  

A number of in vitro studies have examined the acquisition of drug resistance to the triazole fluconazole, a first-line treatment for many Candida infections. Much less is known about posaconazole, a newer triazole. We conducted the first in vitro experimental evolution of replicates from eight diverse strains of C. albicans in a high level of the fungistatic drug posaconazole. Approximately half of the 132 evolved replicates survived 50 generations of evolution, biased towards some of the strain backgrounds. We found that although increases in drug resistance were rare, increases in drug tolerance (the slow growth of a subpopulation of cells in a level of drug above the resistance level) were common across strains. We also found that adaptation to posaconazole resulted in widespread cross-tolerance to other azole drugs. Widespread aneuploidy variation was also observed in evolved replicates from some strain backgrounds. Trisomy of chromosomes 3, 6, and R was identified in 11 of 12 whole-genome sequenced evolved SC5314 replicates. These findings document rampant evolved cross-tolerance among triazoles and highlight that increases in drug tolerance can evolve independently of drug resistance in a diversity of C. albicans strain backgrounds.


2022 ◽  
Author(s):  
Honnakerappa S Ballari ◽  
Shashikant Shiddappa Udikeri ◽  
Vinay Kalia

The prominence of Helicoverpaarmigera (Lepidoptera: Noctuidae) averse insecticide resistance was traversed in the course of 2017 in Karnataka, India. The results divulged typical resistance level prostrating in selected newer insecticides, even though exiguous higher resistance airing in insect growth regulator Novaluranwith LC 50 of and 13.02 to 18.07 ppm and 1.17 to 1.95 folds resistance) compared to newer group insecticides Spinasad, Indoxacarb, Flubendiamide, and Rynaxypyr (3.57 to 10.19 ppm, 1.01 to 1.27 fold). Raichur and Kalaburgi strains comprehend higher resistance to Novaluran and newer insecticides with exception of Flubendiamide (Raichur and Vijayapura strains), respectively, and Spinosad (Kalaburgi and Raichur strains), respectively. The morphometric parameters of larval length, pupal length, and weight were most in RCH stain (2.75 cm, 1.76.18 cm, and 0.511 g, 0.309 g) respectively, which was pursued by Kalaburgi strain. The morphometric correlation revealed that larval length was a significant positive relation with insecticide resistance which might be an influence of resistance but not merely responsible. Among newer insecticides, a significant positive correlation between Rynaxypyr and Indoxacarb was evident, similarly, Nuvaluran with Indoxacarb and Rynaxypyr as well. Usage pattern revealed that 81.67 % of farmers found to use insecticides more than the recommended dose and 70.83% have habit consecutive applications of products from the same chemical group which bears witness to developing resistance.


Author(s):  
A. Krisnawati ◽  
K. Noerwijati ◽  
S.W. Indiati ◽  
Trustinah . ◽  
E. Yusnawan ◽  
...  

Background: The infestation of the pod sucking bug Riptortus linearis is one of the limiting factors of soybean productivity in Indonesia. The research aims were to identify the level of resistance to the pod sucking bug R. linearis on several soybean genotypes based on the no-choice test (NCT) and free-choice tests (FCT). Methods: The genetic materials used were 49 soybean genotypes. The study was conducted in the Indonesian Legumes and Tuber Crops Research Institute (ILETRI) from August to December 2020, using the randomized block design in triplicates. The evaluation for pod sucking bug resistance was based on NCT and FCT. Result: The FCT resulted in two genotypes with a consistent moderately resistance level (20-40% of damage intensity) to pod sucking bug based on the pod and seed damage intensity. The NCT method resulted in five genotypes as moderately resistant (20-40% of damage intensity) to pod sucking bug based on the seed damage. The NCT resulted in higher average intensity of pod and seed damage (80.25% and 71.23%, respectively) than the FCT (69.91% and 69.09%, respectively). Two soybean genotypes (Degra/Anjasmoro-1-559 and Anjasmoro/IAC100-2-618) with a consistent moderately resistance level could be used for cultivar improvement in the breeding program. The pod trichome density was suggested to be one of the effective morphological defenses against the pod sucking bug attack.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Rui-xin Shen ◽  
Yi-ting Wang ◽  
Jia-hong Wu ◽  
Ning Zhang ◽  
Heng-duan Zhang ◽  
...  

Abstract Background Odorant-binding proteins (OBPs) play important roles in many physiological processes of mosquitoes. Previous high-throughput sequencing studies have revealed that some OBPs of Culex quinquefasciatus might be involved in the development of resistance to insecticides. Methods Based on the results of sequencing analyses, the OBP28 gene was selected for evaluation in this study. Three laboratory strains of Cx. quinquefasciatus [susceptible strain (SS), deltamethrin-resistant strain 1 (HN) and deltamethrin-resistant strain 2 (RR)] were first examined by using the Centers for Disease Control and Prevention bottle bioassay, after which the expression level of the OBP28 gene in the susceptible and deltamethrin-resistant strains was determined by real-time quantitative polymerase chain reaction. The OBP28 gene in deltamethrin-resistant strain RR was silenced using RNA interference technology. The expression level of OBP28 and the resistance level were tested in the silenced strain and control strain after microinjection of double-stranded RNA for a 48-h interference period. Four field-collected strains (henceforth ‘field strains’) of Cx. quinquefasciatus were also examined for their resistance to deltamethrin and levels of OBP28 expression. Finally, a correlation analysis between deltamethrin resistance and gene expression was carried out for all seven strains, i.e. the four field strains and the three laboratory strains. Results In the bioassay, the mortality of SS, HN and RR was 100%, 21.33% and 1.67%, respectively. The relative expression levels of OBP28 in strains HN and RR were 6.30- and 6.86-fold higher, respectively, than that of strain SS. After silencing of the OBP28 gene, the mortality of strain RR was 72.20% and that of the control strain 26.32%. The mortality of strain RR increased significantly after interference compared to that of the control strain. There was a negative correlation between OBP28 gene expression and mortality in adult mosquitoes after exposure to deltamethrin. Conclusions To our knowledge, this study shows for the first time a correlation between the expression of a gene coding for OBP and insecticide resistance in mosquitoes. The potential resistance mechanism that was elucidated provides a new target gene for the surveillance of resistance in mosquitoes. Graphical abstract


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0261528
Author(s):  
Min Zhang ◽  
Chong Wang ◽  
Annette O’Connor

Multidrug resistance (MDR) has been a significant threat to public health and effective treatment of bacterial infections. Current identification of MDR is primarily based upon the large proportions of isolates resistant to multiple antibiotics simultaneously, and therefore is a belated evaluation. For bacteria with MDR, we expect to see strong correlations in both the quantitative minimum inhibitory concentration (MIC) and the binary susceptibility as classified by the pre-determined breakpoints. Being able to detect correlations from these two perspectives allows us to find multidrug resistant bacteria proactively. In this paper, we provide a Bayesian framework that estimates the resistance level jointly for antibiotics belonging to different classes with a Gaussian mixture model, where the correlation in the latent MIC can be inferred from the Gaussian parameters and the correlation in binary susceptibility can be inferred from the mixing weights. By augmenting the laboratory measurement with the latent MIC variable to account for the censored data, and by adopting the latent class variable to represent the MIC components, our model was shown to be accurate and robust compared with the current assessment of correlations. Applying the model to Salmonella heidelberg samples isolated from human participants in National Antimicrobial Resistance Monitoring System (NARMS) provides us with signs of joint resistance to Amoxicillin-clavulanic acid & Cephalothin and joint resistance to Ampicillin & Cephalothin. Large correlations estimated from our model could serve as a timely tool for early detection of MDR, and hence a signal for clinical intervention.


2021 ◽  
Vol 18 (3) ◽  
pp. 159-169
Author(s):  
Sri Yusmalinar ◽  
◽  
Tjandra Anggraeni ◽  
Ramadhani Eka Putra ◽  
Ashari Zain ◽  
...  

A previous report has indicated that in many regions of Indonesia, populations of Musca domestica Linnaeus have shown very high resistance to permethrin and low resistance to imidacloprid. In this study, the resistance status to permethrin and imidacloprid was updated using a topical application and feeding bioassay. Six housefly strains originated from six highly populated cities in Indonesia, namely Serang (SRG), Jakarta (JKT), Bandung (BDG), Semarang (SMG), Yogyakarta (JOG), and Surabaya (SBY). A seventh strain (Danish Pest Infestation Laboratory (DPIL)) served as the control. Each strain was tested for resistance to the two insecticides. In addition, the rate of development of resistance to the two insecticides was measured over ten generations. The results indicated that all field strains showed very high resistance to permethrin. The highest resistance level recorded was in the SRG strain (RR50 = 2880), and the lowest was in the JKT strain (RR50 = 520). Repeated application of permethrin over ten generations increased the resistance level by about 2.7–32.73-fold as compared to the level of their respective parental populations. On the other hand, most strains showed low to moderate resistance to imidacloprid, in which the SRG strain had the highest resistance level (RR50 = 15.5) and the SBY strain had the lowest (RR50 = 2.0). Repeated application of imidacloprid over ten generations increased the resistance level by about 3.25–17.41-fold. The findings, which is the second report of housefly resistance in Indonesia since 2016, provide a crucial foundation for developing appropriate housefly integrated pest management strategies in highly populated areas in Indonesia.


Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2787
Author(s):  
Marta Dmochowska-Boguta ◽  
Yuliya Kloc ◽  
Waclaw Orczyk

Hydrogen peroxide is a signal and effector molecule in the plant response to pathogen infection. Wheat resistance to Puccinia triticina Eriks. is associated with necrosis triggered by oxidative burst. We investigated which enzyme system dominated in host oxidative reaction to P. triticina infection. The susceptible Thatcher cultivar and isogenic lines with defined resistance genes were inoculated with P. triticina spores. Using diamine oxidase (DAO) and polyamine oxidase (PAO) inhibitors, accumulation of H2O2 was analyzed in the infection sites. Both enzymes participated in the oxidative burst during compatible and incompatible interactions. Accumulation of H2O2 in guard cells, i.e., the first phase of the response, depended on DAO and the role of PAO was negligible. During the second phase, the patterns of H2O2 accumulation in the infection sites were more complex. Accumulation of H2O2 during compatible interaction (Thatcher and TcLr34 line) moderately depended on DAO and the reaction of TcLr34 was stronger than that of Thatcher. Accumulation of H2O2 during incompatible interaction of moderately resistant plants (TcLr24, TcLr25 and TcLr29) was DAO-dependent in TcLr29, while the changes in the remaining lines were not statistically significant. A strong oxidative burst in resistant plants (TcLr9, TcLr19, TcLr26) was associated with both enzymes’ activities in TcLr9 and only with DAO in TcLr19 and TcLr26. The results are discussed in relation to other host oxidative systems, necrosis, and resistance level.


Sign in / Sign up

Export Citation Format

Share Document