Genetic Mapping of Adult-Plant Resistance Genes to Powdery Mildew in Triticale

Author(s):  
Mateusz Maksymilian Dyda ◽  
Mirosław Tyrka ◽  
Gabriela Gołębiowska ◽  
Marcin Rapacz ◽  
Maria Wędzony

Abstract Triticale is a cereal of high economic importance, however along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper we present a new, high-density genetic map of triticale doubled haploids (DH) population ‘Grenado’ x ‘Zorro’ composed of DArT, silicoDArT and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.

Author(s):  
Mateusz Dyda ◽  
Mirosław Tyrka ◽  
Gabriela Gołębiowska ◽  
Marcin Rapacz ◽  
Maria Wędzony

Abstract Triticale is a cereal of high economic importance; however, along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper, we present a new, high-density genetic map of triticale doubled haploids (DH) population “Grenado” × “Zorro” composed of DArT, silicoDArT, and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein, and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.


2010 ◽  
Vol 23 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Reza Aghnoum ◽  
Thierry C. Marcel ◽  
Annika Johrde ◽  
Nicola Pecchioni ◽  
Patrick Schweizer ◽  
...  

The basal resistance of barley to powdery mildew (Blumeria graminis f. sp. hordei) is a quantitatively inherited trait that is based on nonhypersensitive mechanisms of defense. A functional genomic approach indicates that many plant candidate genes are involved in the defense against formation of fungal haustoria. It is not known which of these candidate genes have allelic variation that contributes to the natural variation in powdery mildew resistance, because many of them may be highly conserved within the barley species and may act downstream of the basal resistance reaction. Twenty-two expressed sequence tag or cDNA clone sequences that are likely to play a role in the barley–Blumeria interaction based on transcriptional profiling, gene silencing, or overexpression data, as well as mlo, Ror1, and Ror2, were mapped and considered candidate genes for contribution to basal resistance. We mapped the quantitative trait loci (QTL) for powdery mildew resistance in six mapping populations of barley at seedling and adult plant stages and developed an improved high-density integrated genetic map containing 6,990 markers for comparing QTL and candidate gene positions over mapping populations. We mapped 12 QTL at seedling stage and 13 QTL at adult plant stage, of which four were in common between the two developmental stages. Six of the candidate genes showed coincidence in their map positions with the QTL identified for basal resistance to powdery mildew. This co-localization justifies giving priority to those six candidate genes to validate them as being responsible for the phenotypic effects of the QTL for basal resistance.


2021 ◽  
Author(s):  
Mateusz Maksymilian Dyda ◽  
Mirosław Tyrka ◽  
Gabriela Gołębiowska ◽  
Marcin Rapacz ◽  
Maria Wędzony

Abstract Combining to tolerance to biotic and abiotic stresses is important target for modern triticale breeding. Cultivation of varieties resistant to fungal pathogens is economically and environmentally important and may lead to reducing of the use of fungicides. Molecular markers are necessary for accumulation of advantageous alleles in the best genotypes by means of marker-assisted and genomic selection approaches. In present research, QTL regions associated with the powdery mildew resistance at adult plant stage were evaluated in order to provide the effective selection tools. Testing of DH population in multiple environments under natural infestation revealed 20 QTL on wheat (4A, 3B, 4B) and rye (2R, 4R, 5R, 6R) chromosomes. Regions explained 8.1% - 29.3% of phenotypic variation depending of the trait, localization and year of the experiment. Main QTL with effect exceeding 15% were found on chromosomes 3B, 4B, 2R, 5R and 6R. QTL and candidate genes located on chromosomes 4B, 2R, 5R and 6R are so far reported for the first time as regions associated with PM resistance in the adult triticale plants. Additionally, within all QTL, 21 candidate genes associated with the PM resistance were revealed. Predicted function of protein encoded by these genes include triggering a defense system which restricts the pathogen growth, enzyme activity, regulation of hormone-activated pathways, transcriptional corepressor complex and cell wall construction. Availability of QTL, molecular markers together with candidate genes linked with the powdery mildew resistance can be validated on triticale lines and varieties and then, used in MAS to improve modern breeding.


Plant Disease ◽  
2013 ◽  
Vol 97 (3) ◽  
pp. 410-417 ◽  
Author(s):  
V. Troch ◽  
K. Audenaert ◽  
A. Vanheule ◽  
B. Bekaert ◽  
M. Höfte ◽  
...  

Triticale (×Triticosecale) is the intergeneric hybrid between the female parent wheat and the male parent rye. With the expansion of the triticale growing area, powdery mildew emerged on this new host and has become a significant disease on triticale. Recent research demonstrated that this “new” powdery mildew on triticale has emerged through a host range expansion of powdery mildew of wheat. Moreover, this expansion occurred recently and multiple times at different locations in Europe. An effective and environmentally sensitive approach to controlling powdery mildew involves breeding crop plants for resistance. The main goal of this study was to identify the presence of powdery mildew resistance in commercial triticale cultivars. First, the avirulence (AVR) genes and gene complexity carried by this new powdery mildew population on triticale were characterized. Virulence was identified for all the resistance genes evaluated in the present study, and virulence frequencies higher than 50% were recorded on the genes Pm3f, Pm5b, Pm6, Pm7, Pm8, and Pm17. Using molecular markers, the presence of resistance genes Pm3f and Pm17 was identified in certain triticale cultivars. The triticale cultivars were also evaluated for the presence of quantitative resistance at adult plant growth stages in a 2-year field experiment. Despite the high disease pressure, cultivars highly resistant at the adult-plant growth stages were identified. Because ‘Grenado’ also showed effective race-specific resistance, this cultivar could be of high value for breeding for durable resistance to powdery mildew. Altogether, this study reveals valuable information on the presence of powdery mildew resistance in commercial triticale cultivars, which can be used in breeding programs in triticale. Additionally, this study underscores the need to broaden the base of powdery mildew resistance in triticale through introgression and deployment of new sources of mildew resistance, including quantitative resistance.


2009 ◽  
Vol 35 (5) ◽  
pp. 761-767 ◽  
Author(s):  
Gen-Qiao LI ◽  
Ti-Lin FANG ◽  
Hong-Tao ZHANG ◽  
Chao-Jie XIE ◽  
Zuo-Min YANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document