scholarly journals Use of Pareto Principle in Power System Mode Analysis

Author(s):  
Anatoly Mahnitko ◽  
Alexander Gavrilov

Use of Pareto Principle in Power System Mode AnalysisThe optimal power dispatch problem in the power system is looked out in the given work. The mathematical model of power system optimal regime searching approach in the market conditions in accordance with Pareto principle is described. The theoretical layout is illustrated on a real power system model of the united power system, which consists of 17 nodes and 21 lines. The procedure is realized using the GAMS software.

Author(s):  
Richard T. Meyer ◽  
Raymond A. DeCarlo ◽  
Steve D. Pekarek ◽  
Jing Sun ◽  
Hyeongjun Park

Power management of a ship’s electrical system has become important due to increasing loads from manpower-reducing automation, greater power requirements of advanced weapons and sensors, introduction of all electric propulsion, and the increasing cost of oil-based fossil fuels. A coordinated power management strategy of the ship’s electric power grid is desired to optimally allocate power flows and minimize fuel consumption. This paper develops such an optimal power management system for an interconnected, supervisory-level ship power system model based upon a ship power system test bed developed for the Office of Naval Research. The ship power system consists of two electrical generators, one rated at 59 kW to represent a gas turbine engine-generator pair and the other rated at 11 kW to represent a diesel generator, an 8 kW pulsed power load that represents the discharge and charge of a capacitor bank for an electromagnetic railgun system, and 37 kW ship propulsion system comprised of an induction motor coupled to the propeller shaft. The ship propulsion system’s induction motor has switched operation with two modes of operation, propelling and generating; the latter mode means that excess kinetic energy during ship slowing can be used to charge the capacitor bank for loads such as pulsed power loads. Given the switched system model, the paper sets forth a hybrid model predictive control strategy based on a minimization of a performance index that trades off fuel consumption, velocity tracking error, and electrical bus voltage error. The optimization is performed using a relaxed representation of the control problem (termed the embedding method) and collocation for discretization with traditional numerical programming to compute the mode and continuous control inputs. The methodology avoids the computational complexity associated with alternative approaches, e.g., mixed-integer programming. Numerical optimization is performed with MATLAB’s sqpLineSearch. To demonstrate the power management approach, a scenario is simulated where the ship is to follow a changing desired velocity while simultaneously maintaining the bus voltage at a desired value, keeping the 11 kW generator at a fuel efficient operating point, and minimizing the fuel use of the 59 kW generator.


2021 ◽  
Vol 264 ◽  
pp. 04045
Author(s):  
Tulkin Gayibov ◽  
Behzod Pulatov

Over the past decades, many publications on the use of genetic algorithms, which offer a new and powerful approach for solving the problem of power system mode optimization, have appeared. Despite this, the issues of effectively taking into account various constraints when solving such problems with genetic algorithms remain opened. In this regard, this article proposes an algorithm for optimizing power system modes by genetic algorithm, taking into account functional constraints in the form of equalities and inequalities by various penalty functions. The results of effectiveness research of the given algorithm in the example of optimization of 8-nodal power system with four thermal power plants and three lines with controlled power flows are presented.


2012 ◽  
Vol 66 (4) ◽  
pp. 601-607 ◽  
Author(s):  
Svetlana Ivanov ◽  
Ljubica Ivanic ◽  
Dragoslav Guskovic ◽  
Srba Mladenovic

Successful simulation of problems and phenomena related to the changes of the alloys composition is possible by applying simplex plans. The concentration (simplex) triangle application for the design of the optimal regime of Al-5wt%Cu-Pb-Bi alloy aging process is presented in this paper. The iso-lines of the given alloy?s mechanical properties in temperature-aging time coordinates were obtained by applying the mathematical models based of the given aging regimes, and the obtained results of changed properties. Regression polynomial of the fourth degree was used as the mathematical model, whereas the effect of the aging regime has been observed through the changes of tensile strength and contraction. Based on the obtained results, we have come to the conclusion that the simplex lattice method can be successfully applied to a great number of heat treatment aspects when with the increase of the temperature the duration time must be reduced, and vice versa (aging, annealing, homogenizing, etc.).


2018 ◽  
Vol 5 (5) ◽  
pp. 4-10
Author(s):  
Magomed G. GADZHIYEV ◽  
◽  
Yevgenia A. GULEVICH ◽  
Vladimir N. RYABCHENKO ◽  
Jury V. SHAROV ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document