A bidirectional DC-DC converter for renewable energy systems

2009 ◽  
Vol 57 (4) ◽  
pp. 363-368 ◽  
Author(s):  
S. Jalbrzykowski ◽  
T. Citko

A bidirectional DC-DC converter for renewable energy systemsTo improve the energy quality, most of the renewable energy systems include an energy storage element charged by the bidirectional DC-DC converter. This paper proposes the bidirectional DC-DC converter which employs the two bridge configuration resonant class-E converters on the both sides of the isolating transformer. The low side converter is controlled as step up and the high side converter is controlled as step down. The proposed system is characterized by good dynamic properties and high efficiency because the converter transistors are switched in ZVS conditions. A theoretical analysis to provide relations for system design, and the laboratory model investigations to validate the system characteristic are given in the paper.

2013 ◽  
Vol 6 (3) ◽  
pp. 1026 ◽  
Author(s):  
Jonathan E. Halls ◽  
Amanda Hawthornthwaite ◽  
Russell J. Hepworth ◽  
Noel A. Roberts ◽  
Kevin J. Wright ◽  
...  

2022 ◽  
pp. 779-804
Author(s):  
Muhammad Asif Rabbani

It is very important that the installed renewable energy system should produce the maximum power outputs with minimum costs, and that can only be achieved with the selection of the best optimization technique applied for the best control strategies along with the introduction of the hybrid energy storage systems (HESS). This chapter presents some optimization techniques applied in control strategies for hybrid energy storage systems in distributed renewable energy systems. The integration of energy production and consumption component through the smart grid concept enables increased demand response and energy efficiency. Hybrid energy storage systems and their applications in the renewable energy systems are extensively discussed besides control strategies involved. The storages systems will play an important role in future related to smart grid.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 755 ◽  
Author(s):  
Umashankar Subramaniam ◽  
Sridhar Vavilapalli ◽  
Sanjeevikumar Padmanaban ◽  
Frede Blaabjerg ◽  
Jens Bo Holm-Nielsen ◽  
...  

In remote locations such as villages, islands and hilly areas, there is a possibility of frequent power failures, voltage drops or power fluctuations due to grid-side faults. Grid-connected renewable energy systems or micro-grid systems are preferable for such remote locations to meet the local critical load requirements during grid-side failures. In renewable energy systems, solar photovoltaic (PV) power systems are accessible and hybrid PV-battery systems or energy storage systems (ESS) are more capable of providing uninterruptible power to the local critical loads during grid-side faults. This energy storage system also improves the system dynamics during power fluctuations. In present work, a PV-battery hybrid system with DC-side coupling is considered, and a power balancing control (PBC) is proposed to transfer the power to grid/load and the battery. In this system, a solar power conditioning system (PCS) acts as an interface across PV source, battery and the load/central grid. With the proposed PBC technique, the system can operate in following operational modes: (a) PCS can be able to work in grid-connected mode during regular operation; (b) PCS can be able to charge the batteries and (c) PCS can be able to operate in standalone mode during grid side faults and deliver power to the local loads. The proposed controls are explained, and the system response during transient and steady-state conditions is described. With the help of controller-in-loop simulation results, the proposed power balancing controls are validated, for both off-grid and on-grid conditions.


2021 ◽  
Vol 16 ◽  
pp. 41-51
Author(s):  
T. A. Boghdady ◽  
S. N. Alajmi ◽  
W. M. K. Darwish ◽  
M. A. Mostafa Hassan ◽  
A. Monem Seif

Renewable energy resources are a favorable solution for the coming energy. So, a great interest has been paid in the last decades for developing and utilizing renewable energy resources as wind energy. As it has a large energy contents and, particularize with the availability, but the major problems of it are represented in unmatched with load demand because the intermittency and fluctuation of nature conditions. Many studies focused on the new strategy of using Battery Storage System (BSS), and solving some problems that affect the DC bus voltage and the BSS by using Electrochemical Double Layer Capacitor (EDLC). Their capability is to store energy to realize the objective of time shifting of surplus energy with a high efficiency. The article main objective is to model, simulate, design, and study the performance of a Stand-Alone Wind Energy System with Hybrid Energy Storage (SAWS-HES). Thus, a complete model of the proposed system is implemented including a detailed modeling procedure of the HESS components. In addition to the main contribution, a study of the performance of EDLC only as a storage device that has fast response device integrated to the suggested system then it hybridized with the BSS. The HESS has the capability to compensate the DC bus voltage in the transient conditions and gives good stability for the system. The SAWS-HES utilizes one main renewable energy resource as wind turbine and overall model is employed under MATLAB/Simulink including a developed simple logic controller. The SAWS-HES simulation results presented a promising performance and have a satisfied performance in meeting the end load demands at different operation conditions. This ensures the SAWS-HES reliability and the effectiveness with HES and the controller in stand-alone operation formulating an excellent solution for the renewable energy systems


Sign in / Sign up

Export Citation Format

Share Document