scholarly journals Modelling Sustainable Development Scenarios of Croatian Power System

2010 ◽  
Vol 61 (3) ◽  
pp. 157-163
Author(s):  
Robert Pašičko ◽  
Zoran Stanić ◽  
Nenad Debrecin

Modelling Sustainable Development Scenarios of Croatian Power SystemThe main objective of power system sustainable development is to provide the security of electricity supply required to underpin economic growth and increase the quality of living while minimizing adverse environmental impacts. New challenges such as deregulation, liberalization of energy markets, increased competition on energy markets, growing demands on security of supply, price insecurities and demand to cut CO2 emissions, are calling for better understanding of electrical systems modelling. Existing models are not sufficient anymore and planners will need to think differently in order to face these challenges. Such a model, on the basis on performed simulations, should enable planner to distinguish between different options and to analyze sustainability of these options. PLEXOS is an electricity market simulation model, used for modeling electrical system in Croatia since 2005. Within this paper, generation expansion scenarios until 2020 developed for Croatian Energy Strategy and modeled in PLEXOS. Development of sustainable Croatian energy scenario was analyzed in the paper - impacts of CO2 emission price and wind generation. Energy Strategy sets goal for 1200 MW from wind power plants in 2020. In order to fully understand its impacts, intermittent nature of electricity generation from wind power plant was modeled. We conclude that electrical system modelling using everyday growing models has proved to be inevitable for sustainable electrical system planning in complex environment in which power plants operate today.

2005 ◽  
Vol 9 (3) ◽  
pp. 15-23 ◽  
Author(s):  
Fajik Begic ◽  
Anes Kazagic

Along with the current processes of restructuring of Energy power system of Bosnia and Herzegovina, liberalization of the electricity market, and modernization of the existing power plants, Bosnia and Herzegovina must turn to the utilization of renewable resources in reason able dynamics as well. Respecting this policy, the initial Valuation of the potential of renewable erg resources in Bosnia and Herzegovina is per formed. The methodology of evaluation of wind energy utilization is presented in this paper, as well as some other aspects of utilization of the renewable energy resources in Bosnia and Herzegovina. Implementation of selected projects should improve sustainability of energy power production in Bosnia and Herzegovina, by reducing the total emission of carbon dioxide originated from energy power system of Bosnia and Herzegovina.


2017 ◽  
Vol 32 (3) ◽  
pp. 1108-1116 ◽  
Author(s):  
Pouyan Pourbeik ◽  
Juan J. Sanchez-Gasca ◽  
Jayapalan Senthil ◽  
James D. Weber ◽  
Pouya Sajjad Zadehkhost ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1604
Author(s):  
Krešimir Fekete ◽  
Srete Nikolovski ◽  
Zvonimir Klaić ◽  
Ana Androjić

Stochastic production from wind power plants imposes additional uncertainty in power system operation. It can cause problems in load and generation balancing in the power system and can also cause congestion in the transmission network. This paper deals with the problems of congestion in the transmission network, which are caused by the production of wind power plants. An optimization model for corrective congestion management is developed. Congestions are relieved by re-dispatching several cascaded hydropower plants. Optimization methodology covers the optimization period of one day divided into the 24 segments for each hour. The developed optimization methodology consists of two optimization stages. The objective of the first optimization stage is to obtain an optimal day-ahead dispatch plan of the hydropower plants that maximizes profit from selling energy to the day-ahead electricity market. If such a dispatch plan, together with the wind power plant production, causes congestion in the transmission network, the second optimization stage is started. The objective of the second optimization stage is the minimization of the re-dispatching of cascaded hydropower plants in order to avoid possible congestion. The concept of chance-constrained programming is used in order to consider uncertain wind power production. The first optimization stage is defined as a mixed-integer linear programming problem and the second optimization stage is defined as a quadratic programming (QP) problem, in combination with chance-constrained programming. The developed optimization model is tested and verified using the model of a real-life power system.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2309 ◽  
Author(s):  
Christos Agathokleous ◽  
Jimmy Ehnberg

A significant amount of conventional power plants in the European power system is anticipated to be replaced by solar and wind power in the future. This may require alternative sources for inertia support. The purpose of the paper is to learn about the consequences on the frequency deviation after a fault in the European power system when more wind and solar are introduced and when wind is considered as a possible provider of inertia. This study quantifies the expected maximum requirement for additional inertia in the future European power system up to 2050. Furthermore, we investigated the possibility of wind power to meet this additional need by providing emulated inertia. The European power system of the EU-28 countries has been clustered to the five synchronous grids, UCTE, Nordic, UK, Baltic and Irish. The future European energy mix is simulated considering twelve different scenarios. Production units are dispatched according to their expected environmental impacts, which closely follow the minimum natural contribution of inertia, in descending order. The available capacity for all the types of production is considered the same as the installed. For all the simulated scenarios the worst case is examined, which means that a sudden disconnection of the largest production unit of the dispatched types is considered. Case study results reveal that, in most cases, additional inertia will be required but wind power may fully cover this need for up to 84% of all simulated horizons among all the scenarios on the UCTE grid, and for up to 98%, 86%, 99% and 86% on the Nordic, UK, Baltic and Irish grids, respectively.


Sign in / Sign up

Export Citation Format

Share Document