scholarly journals Microwave Assisted Co/SiO2 preparation for Fischer-Tropsch synthesis

2020 ◽  
Vol 20 (2) ◽  
pp. 42-48
Author(s):  
TEUKU MUKHRIZA ◽  
KUI ZHANG ◽  
ANH N. PHAN

Cobalt catalyst has been widely used for Fischer-Tropsch (FT) Synthesis in Industry. The most common method to prepare cobalt catalyst is impregnations. Metal is deposited on porous support by contacting dry support with solution containing dissolved cobalt precursor. This step will follow by drying, calcination and reduction. The heating step used in this conventional method, however, may lead to the formation of metal silicate which is inactive site for catalysis.  In this study, author explore the use of microwave to prepare catalyst compared to conventional drying method. Cobalt catalyst with SiO2 support was prepared and characterized. Particle size, surface area, and cobalt content were investigated. Crystallite size of 3-8 nm was formed which was reported to be the optimum size for cobalt catalyst in FT Synthesis. Scanning Electron Microscope (SEM) and Transmission Electron Microscopy (TEM) image revealed that microwave catalyst showed better uniformity and cobalt dispersion on silica support. Thermo-Gravimetric Analysis (TGA) study also indicated that this catalyst has good stability at Low Temperature Fischer-Tropsch Synthesis. The catalysts were then applied plasma assisted FT process over a range of power plasma (20-60W) to investigate the effect on the conversion and selectivity. The results showed that microwave catalyst exhibit lower CO conversion at 42.06% compared to conventional method at 68.32%. However, microwave catalyst is more favourable for long chain hydrocarbon selectivity.

2017 ◽  
Vol 2 (1) ◽  
pp. 51-61
Author(s):  
Nima Mohammadi Taher ◽  
Maedeh Mahmoudi ◽  
Seyyede Shahrzad Sajjadivand

Abstract An investigation was done to develop and characterize the alumina supported cobalt catalyst for Fischer-Tropsch Synthesis to produce biodiesel from biomass with the aim to produce alumina-supported cobalt catalysts containing 7 to 19 wt.% cobalt content. By using incipient wetness impregnation of γ-Al2O3 supports with cobalt nitrate hexahydrate with ethanol and distilled water solutions; the 14 wt.% cobalt content in catalyst was achieved. Nitrogen adsorption-desorption, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray fluorescence (XRF), H2temperature programmed reduction (H2-TPR), temperature programmed desorption (TPD), temperature programmed oxidation (TPO) and carbon monoxide chemisorption were used for the characterization of the catalysts to attain an appropriate cobalt catalyst. In order to investigate the effect of the impregnation on the crystalline size, surface area and cobalt content, three different impregnation methods with various durations were investigated. In addition, increasing the impregnation duration increased the cobalt content and its dispersion. Based on results, positive effect of the alumina support and impregnation duration on the crystallite size, surface area, and pore diameter, reducibility of the catalyst and cobalt dispersion were investigated. Thus, cobalt catalyst for using in fixed bed reactor to produce biodiesel from biomass through Fischer-Tropsch Synthesis was prepared and characterized.


Author(s):  
Muhammad Faizan Shareef ◽  
Muhammad Arslan ◽  
Naseem Iqbal ◽  
Nisar Ahmad ◽  
Tayyaba Noor

This paper presents the effect of a synthesis method for cobalt catalyst supported on hydrotalcite material for Fischer-Tropsch synthesis. The hydrotalcite supported cobalt (HT-Co) catalysts were synthesized by co-precipitation and hydrothermal method. The prepared catalysts were characterized by using various techniques like BET (Brunauer–Emmett–Teller), SEM (Scanning Electron Microscopy), TGA (Thermal Gravimetric Analysis), XRD (X-ray diffraction spectroscopy), and FTIR (Fourier Transform Infrared Spectroscopy). Fixed bed micro reactor was used to test the catalytic activity of prepared catalysts. The catalytic testing results demonstrated the performance of hydrotalcite based cobalt catalyst in Fischer-Tropsch synthesis with high selectivity for liquid products. The effect of synthesis method on the activity and selectivity of catalyst was also discussed. Copyright © 2017 BCREC Group. All rights reservedReceived: 3rd November 2016; Revised: 26th February 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017How to Cite: Sharif, M.S., Arslan, M., Iqbal, N., Ahmad, N., Noor, T. (2017). Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3): 357-363 (doi:10.9767/bcrec.12.3.762.357-363) 


Author(s):  
Muhammad Faizan Shareef ◽  
Muhammad Arslan ◽  
Naseem Iqbal ◽  
Nisar Ahmad ◽  
Tayyaba Noor

This paper presents the effect of a synthesis method for cobalt catalyst supported on hydrotalcite material for Fischer-Tropsch synthesis. The hydrotalcite supported cobalt (HT-Co) catalysts were synthesized by co-precipitation and hydrothermal method. The prepared catalysts were characterized by using various techniques like BET (Brunauer–Emmett–Teller), SEM (Scanning Electron Microscopy), TGA (Thermal Gravimetric Analysis), XRD (X-ray diffraction spectroscopy), and FTIR (Fourier Transform Infrared Spectroscopy). Fixed bed micro reactor was used to test the catalytic activity of prepared catalysts. The catalytic testing results demonstrated the performance of hydrotalcite based cobalt catalyst in Fischer-Tropsch synthesis with high selectivity for liquid products. The effect of synthesis method on the activity and selectivity of catalyst was also discussed. Copyright © 2017 BCREC Group. All rights reservedReceived: 3rd November 2016; Revised: 26th February 2017; Accepted: 9th March 2017; Available online: 27th October 2017; Published regularly: December 2017How to Cite: Sharif, M.S., Arslan, M., Iqbal, N., Ahmad, N., Noor, T. (2017). Development of Hydrotalcite Based Cobalt Catalyst by Hydrothermal and Co-precipitation Method for Fischer-Tropsch Synthesis. Bulletin of Chemical Reaction Engineering & Catalysis, 12(3): 357-363 (doi:10.9767/bcrec.12.3.762.357-363) 


2021 ◽  
Vol 1 (1-2) ◽  
pp. 30-40
Author(s):  
R. E. Yakovenko ◽  
I. N. Zubkov ◽  
V. G. Bakun ◽  
M. R. Agliullin ◽  
A. N. Saliev ◽  
...  

The effect of the quality of various domestic commercial HZSM-5 zeolites on the properties of bifunctional cobalt catalyst represented by a composite mixture was studied in the Fischer – Tropsch synthesis. Activities and selectivities of the catalyst samples were compared. The fractional and hydrocarbon composition of the synthesis products was investigated; viscosity-temperature characteristics of the diesel fuel fraction were estimated. A promising HZSM-5 zeolite sample was selected for practical implementation of the catalytic technology.


2020 ◽  
Vol 599 ◽  
pp. 117608 ◽  
Author(s):  
Mingsheng Luo ◽  
Shuo Li ◽  
Zuoxing Di ◽  
Zhi Yang ◽  
Weichao Chou ◽  
...  

Author(s):  
Negin Davoodian ◽  
Ali Nakhaei Pour ◽  
Mohammad Izadyar ◽  
Ali Mohammadi ◽  
Mehdi Vahidi

Sign in / Sign up

Export Citation Format

Share Document