thermo gravimetric analysis
Recently Published Documents


TOTAL DOCUMENTS

632
(FIVE YEARS 221)

H-INDEX

19
(FIVE YEARS 5)

2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Md. Nabul Sardar ◽  
Nazia Rahman ◽  
Shahnaz Sultana ◽  
Nirmal Chandra Dafader

Abstract This study focuses on the adsorption of hazardous Cr (III) and Cu (II) ions from aqueous solution by applying modified waste polypropylene (PP) fabric as an adsorbent. Pre-irradiation technique was performed for grafting of sodium styrene sulfonate (SSS) and acrylic acid (AAc) onto the PP fabric. The monomer containing 8% SSS and 16% AAc in water was used. Graft yield at 30 kGy radiation dose was 390% when 4% NaCl was added as additive. The prepared adsorbent was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermo-gravimetric analysis (TGA) and dynamic mechanical analyzer (DMA). The influences of different parameters including pH, contact time, temperature and initial metal ion concentration were also investigated. The equilibrium adsorption data were better fitted to the Langmuir isotherm model with maximum monolayer adsorption capacity 384.62 mg/g for Cr (III) and 188.68 mg/g for Cu (II) ions. The kinetic data were better explained by pseudo first-order kinetic model having good matching between the experimental and theoretical adsorption capacity. The adsorption process was spontaneous, endothermic and thermodynamically feasible. Furthermore, investigation of desorption of metal ions and reuse of the adsorbent suggesting that the adsorbent is an efficient and alternative material in the removal of Cr (III) and Cu (II) from aqueous media.


Author(s):  
Nitu Bhatnagar ◽  
Avani Pareek

The present study is aimed to observe the difference in the Physico-Chemical characteristics of the marketed and formulated bhasma samples through X-Ray Diffraction analysis (XRD), Dynamic Light Scattering (DLS), Zeta potential, Thermo-Gravimetric analysis (TGA), Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray analysis (EDAX), apart from organoleptic methods. Inductively Coupled Plasma Mass Spectroscopy (ICPMS) analysis was also done to observe the presence of trace and heavy metals so that the safety of all these samples could be ensured. XRD shows variation in oxide nature of zinc as well crystallite size in all bhasma samples. DLS and SEM results show difference in particle size of marketed bhasma samples as compared to formulated Yashada bhasma. EDAX and ICPMS also confirm the alteration in elemental composition of all these bhasma samples. Thus, it can be concluded that these ayurvedic medicines should be prepared strictly using the formulation methods as mentioned in the Ayurvedic texts. This will help the prepared products to adopt the inherent quality of the ancient system of medicine, which shall be useful and devoid of any side effects for human consumption.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7906
Author(s):  
Walid Mohamed Daoush ◽  
Turki Saad Alkhuraiji ◽  
Abdulrahman Dohymish Alshammri

Polycrystalline cBN/copper composite abrasive particles were prepared by an electroless powder coating process. Ti metallization and tin/silver metallization techniques were used to improve the coating process by depositing an autocatalytic metallic layer on the surface of the cBN particles. Metallized, as well as un-metallized, cBN particles were further coated by copper using electroless deposition. Electroless copper coating of un-metallized and metallized cBN particles by 90 wt.% of copper were achieved. The surface morphology, the composition and the crystalline phase identifications of the metallized cBN particles, as well as the 10 wt.% cBN /copper composite powders, were investigated by field emission scanning electron microscopy, an energy-dispersive spectrometer and an X-ray diffractometer. The results show that the surface of the Ti metalized and tin/Ag-metallized cBN particles were covered by the nanosized Ti or Ag layer, respectively, which enhanced the deposition of the copper during the electroless deposition bath. The results also showed that the deposited layer on the metallized cBN particles was composed mainly of metallic copper. The produced 10 wt.% cBN/copper composite particles also underwent thermo-gravimetric analysis to investigate its stability at high temperature. It was revealed that the Ti-metallized cBN/copper composite powder has higher stability at 800 °C under the environmental conditions than the tin/silver-metallized and the un-metallized cBN/copper composite particles, respectively.


YMER Digital ◽  
2021 ◽  
Vol 20 (12) ◽  
pp. 246-257
Author(s):  
Joshi KP ◽  
◽  
Patil S.B ◽  
◽  

Copper sulphides crystals are grown using simple gel technique at ambient temperature. The various lattice parameters, gel aging time, gel setting time, Effect of pH observed, Different characterization like gel aging, pH of gel ,setting of gel with their analysis and Thermal behavior of grown crystal like Thermo gravimetric Analysis TGA are Discussed. The chemical analysis confirmed contents in grown crystal of copper sulphides


2021 ◽  
Author(s):  
Balaji Ayyanar Chninnappan ◽  
K. Marimuthu ◽  
C. Bharathiraj ◽  
B. Gayathri ◽  
S. K. Pradep Mohan

Abstract Samanea saman (SS) flower particulates were filled in Polylactic acid (PLA) composites were fabricated with different 0, 10, and 20 wt. % through the injection molding process. The elemental composition and morphology of SS PLA composites were studied through FESEM and Energy Dispersive X-ray analysis. Thermal stability of the SS PLA composites specimens was carried out through Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimeter (DSC). Crystal orientations studied through X-Ray Diffraction (XRD) showed the presence of the orthorhombic SS particulates. The properties of the composites were investigated such as tensile strength, compressive strength, flexural strength, and Shore D Hardness. It was found that 20 wt. % of SS filled PLA composites has a superior tensile strength of 43.76 MPa, the compression strength of 37.94 MPa, the flexural strength of 72.47 MPa, and Shore D Hardness of 80.1 SHN than pure PLA. SS particulates-filled PLA composites would be used for low-strength applications.


2021 ◽  
Vol 13 (24) ◽  
pp. 13887
Author(s):  
Rosa Veropalumbo ◽  
Francesca Russo ◽  
Cristina Oreto ◽  
Giovanna Giuliana Buonocore ◽  
Letizia Verdolotti ◽  
...  

In order to meet the environmental needs caused by large plastic waste accumulation, in the road construction sector, an effort is being made to integrate plastic waste with the function of polymer into asphalt mixtures; with the purpose of improving the mechanical performance of the pavement layers. This study focuses on the effect of a recycled mixture of plastic waste on the chemical, thermal, and rheological properties of designed asphalt blends and on the identification of the most suitable composition blend to be proposed for making asphalt mixture through a dry modification method. Thermo-gravimetric analysis, differential scanning calorimetry, and Fourier transform infrared spectroscopy analysis were carried out to investigate the effect of various concentrations and dimensions of plastic waste (PW) on the neat binder (NB). The frequency sweep test and the multiple stress creep and recovery test were performed to analyze the viscoelastic behavior of the asphalt blends made up of PW in comparison with NB and a commercial modified bitumen (MB). It has been observed that the presence of various types of plastic materials having different melting temperatures does not allow a total melting of PW powder at the mixing temperatures. However, the addition of PW in the asphalt blend significantly improved the aging resistance without affecting the oxidation process of the plastic compound present in the asphalt blend. Furthermore, when the asphalt blend mixed with 20% PW by the weight of bitumen is adopted into the asphalt mixture as polymer, it improves the elasticity and strengthens the mixture better than the mixture containing MB.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8457
Author(s):  
Marco Maniscalco ◽  
Giulia Infurna ◽  
Giuseppe Caputo ◽  
Luigi Botta ◽  
Nadka Tz. Dintcheva

The zero-waste city challenge of the modern society is inevitably addressed to the development of model’s waste-to-energy. In this work, carob waste, largely used in the agro-industrial sector for sugar extraction or locust beangum (LBG) production, is considered as feedstock for the slow pyrolysis process. According to the Food and Agriculture Organization of the United Nations (FAO), in 2012, the world production of carobs was ca. 160,000 tons, mainly concentrated in the Mediterranean area (Spain, Italy, Morocco, Portugal, and Greece). To evaluate the biomass composition, at first, the carob waste was subjected to thermo-gravimetric analysis. The high content of fixed carbon suggests that carobs are a plausible candidate for pyrolysis conversion to biochar particles. The thermal degradation of the carob waste proceeds by four different steps related to the water and volatile substances’ removal, degradation of hemicellulose, lignin and cellulose degradation, and lignin decomposition. Considering this, the slow pyrolysis was carried out at three different temperatures, specifically, at 280, 340, and 400 °C, and the obtained products were characterized. Varying the processing temperature, the proportion of individual products’ changes with a reduction in the solid phase and an increase in liquid and gas phases, with an increase in the pyrolysis temperature. The obtained results suggest that carob waste can be considered a suitable feedstock for biochar production, rather than for fuels’ recovery.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2230
Author(s):  
Nontsikelelo Noxolo Tafu ◽  
Victoria A. Jideani

Moringa oleifera leaf powder (MOLP) has been identified as the most important functional ingredient owing to its rich nutritional profile and healthy effects. The solubility and functional properties of this ingredient can be enhanced through solid dispersion technology. This study aimed to investigate the effects of polyethylene glycols (PEGs) 4000 and 6000 as hydrophilic carriers and solid dispersion techniques (freeze-drying, melting, solvent evaporation, and microwave irradiation) on the crystallinity and thermal stability of solid-dispersed Moringa oleifera leaf powders (SDMOLPs). SDMOLPs were dully characterized using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The PXRD results revealed that the solid dispersions were partially amorphous with strong diffraction peaks at 2θ values of 19° and 23°. The calorimetric and thermogravimetric curves showed that PEGs conferred greater stability on the dispersions. The FTIR studyrevealed the existence of strong intermolecular hydrogen bond interactions between MOLP and PEG functional groups. MOLP solid dispersions may be useful in functional foods and beverages and nutraceutical formulations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Ali ◽  
R. Almuzaiqer ◽  
K. Al-Salem ◽  
A. Alabdulkarem ◽  
A. Nuhait

AbstractDue to the COVID-19 pandemic, people were encouraged and sometimes required to wear disposable facemasks, which then are discarded creating an environmental problem. In this study, we aim at investigating novel ideas to recycle wasted facemasks in order to lower the environmental impact. An experimental study has been carried out to investigate the possibility of using discarded masks for thermal insulation and sound absorption. The wasted masks are simulated by new masks, which stripped off the nose clips, elastic ear loops and are heated to 120 °C for one hour to kill any biological contaminants. The masks are also melted to investigate their thermal insulation and sound absorption properties. Results show that the thermal conductivity coefficients of the loose and melted masks are 0.03555 and 0.08683 W/m K, respectively, at room temperature of about 25 °C. Results show also that the sound absorption coefficient for loose masks is above 0.6 for the frequency range 600–5000 Hz. The loose facemasks are found to be thermally stable up to 295 °C, elastic ear loops at 304.7 °C, and the composite (melted) facemasks at 330.0 °C using the thermo-gravimetric analysis. Characterization of the facemask’s three-layer fibers and the composite (melted) samples is obtained using scanning electron microscopy (SEM). The three-point bending test is obtained for the composite specimens showing good values of flexural stress, flexural strain, and flexural elastic modulus. These results are promising about using such discarded masks as new thermal insulation and sound-absorbing materials for buildings replacing the synthetic or petrochemical insulation materials.


Sign in / Sign up

Export Citation Format

Share Document