scholarly journals Peningkatan Efisiensi Penggunaan Air Irigasi dengan Aplikasi Jadual Tanam Secara “Nyorog” pada Subak

2019 ◽  
Vol 4 (1) ◽  
pp. 35
Author(s):  
I Wayan Tika ◽  
I. A. Bintang Madrini ◽  
Sumiyati .

Salah satu program penting dalam intensifikasi budidaya padi adalah pengelolaan air irigasi yang efisien. Pada subak di Bali pelaksanaan jadual tanam biasanya dilakukan secara serenpak sehingga terjadi puncak kebutuhan air yang tinggi. Akibatnya sangat berisiko terhadap kekurangan atau kelebihan air irigasai pada subak tersebut. Kondisi demikian menyebabkan efisiensi penggunaan air irigasi pada subak menjadi rendah. Salah satu solusi untuk meingkatkan efisiensi penggunaan air irigasi tersebut adalah dengan melakukan jadual tanam tidak serenpak yang pada subak dikenal dengan istilah nyorog. Dengan demikian perlu dikaji besarnya peningkatan efisiensi penggunaan air irigasi jika jadual tanam dilakukan secara nyorog Berdasarkan data yang telah dikompilasi diperoleh efisiensi penggunaan air irigasi yang dilakukan saat ini sebesar 76,52%. Saat ini pada obyek penelitian jadual tanam dibagi menjadi dua kelompok dengan beda jadual tanam antar kelompok tersebut sekitar satu bulan, dengan awal jadual tanam mulai Pebruari I.  Jika dilakukan jadual tanam secara serempak pada Pebruari II diperoleh efisiensi penggunaan air irigasi sebesar 69,05%.  Jika jadual tanam dilakukan secara nyorog dengan membagi subak menjadi empat kelompok dan setiap kelompok perbedaan jadual tanam sekitar setengah bulan serta awal jadual tanam pada Bulan Pebruari I maka diperoleh efisiensi penggunaan air irigasinya 86,52%.  Dengan demikian jadual tanam secara nyorog dapat meningkatkan efisiensi penggunaan air irigasi dari 69,05% menjadi 86,52%.    One important program in the intensification of rice cultivation is efficient irrigation water management. In subak in Bali the planting schedule is usually carried out simultaneously so that there is a high peak of water demand. As a result, it is very risky for irrigation water shortages or excess in the subak. Such conditions cause the efficiency of the use of irrigation water in subak to be low. One solution to improve the efficiency of the use of irrigation water is by not planting simultaneously which are known as nyorog in subak. Thus, it is necessary to assess the magnitude of the increase in the efficiency of the use of irrigation water if the planting schedule is carried out in a systematic manner. Based on the data that has been compiled in Subak Guama  the efficiency of the use of irrigation water is 76.52%. At present the object of the planting schedule is divided into two groups with different planting schedules between groups of about one month, with the start of the planting schedule starting in February I. If the planting schedule is simultaneously held in February II, the efficiency of irrigation water use is 69.05%. If the planting schedule is carried out systematically by dividing subak into four groups and each group different planting schedules of about half a month and the beginning of the planting schedule in February I, it is obtained that the water use efficiency of irrigation is 86.52%. Thus the planting schedule nyorog can increase the efficiency of irrigation water use through 69.05% to 86.52%.

2014 ◽  
Vol 06 (13) ◽  
pp. 1248-1258
Author(s):  
Rutilo López-López ◽  
Ignacio Sánchez Cohen ◽  
Marco Antonio InzunzaIbarra ◽  
Andrés Fierro Álvarez ◽  
Gerardo Esquivel Arriaga

2018 ◽  
Vol 208 ◽  
pp. 7-18 ◽  
Author(s):  
Bijan Nazari ◽  
Abdolmajid Liaghat ◽  
Mohammad Reza Akbari ◽  
Marzieh Keshavarz

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Ikram Ullah ◽  
Hanping Mao ◽  
Ghulam Rasool ◽  
Hongyan Gao ◽  
Qaiser Javed ◽  
...  

This study was conducted to investigate the effects of various irrigation water (W) and nitrogen (N) levels on growth, root-shoot morphology, yield, and irrigation water use efficiency of greenhouse tomatoes in spring–summer and fall–winter. The experiment consisted of three irrigation water levels (W: 100% of crop evapotranspiration (ETc), 80%, and 60% of full irrigation) and three N application levels (N: 100%, 75%, and 50% of the standard nitrogen concentration in Hoagland’s solution treatments equivalent to 15, 11.25, 7.5 mM). All the growth parameters of tomato significantly decreased (p < 0.05) with the decrease in the amount of irrigation and nitrogen application. Results depicted that a slight decrease in irrigation and an increase in N supply improved average root diameter, total root length, and root surface area, while the interaction was observed non-significant at average diameter of roots. Compared to the control, W80 N100 was statistically non-significant in photosynthesis and stomatal conductance. The W80 N100 resulted in a yield decrease of 2.90% and 8.75% but increased irrigation water use efficiency (IWUE) by 21.40% and 14.06%. Among interactions, the reduction in a single factor at W80 N100 and W100 N75 compensated the growth and yield. Hence, W80 N100 was found to be optimal regarding yield and IWUE, with 80% of irrigation water and 15 mM of N fertilization for soilless tomato production in greenhouses.


Author(s):  
Recep Cakir

The article contains data obtained from evaluations related to irrigation water use efficiency (IWUE) and water use efficiency (WUE), for the main crops, irrigated at different stages of growth, on the basis of some findings obtained in the Research Institute in Kırklareli. Each of the experimental crops was sown and farmed following procedures applied by the farmers in the region, except of the irrigation applications which were based on the sensitivity of a certain crop to water shortage in the soil, during the specific growth stages. Similar procedures were applied and all the experimental treatments were irrigated at growth stages, as predicted in the research methodology, and water amounts required to fill the 0-90 cm soil depth to field capacity were implied. Evaluation data obtained from the field experiments with three major crops, grown on the non-coastal lands of Thrace Region showed, that the productivity of irrigation water, as well as water use efficiencies of all analysed crops, are growth stage controlled. The highest IWUE and WUE efficiencies of 0.87 and 0.92 kg da-1 m-3; and 1.08 kg da-1 m-3 and 0.81 kg da-1 m-3; were determined for wheat and sunflower crops, irrigated at booting and flowering stages, respectively. Each m3 of irrigation water, applied during the most sensitive fruit formation stage (Ff) of pumpkin crop, provided additionally 8.47 kg da-1 fruit yield, 8.09 fruit numbers and 0.28 kg da-1 seed yields, more than those of rainfed farming (R).


2019 ◽  
Vol 20 (1) ◽  
pp. 83-94 ◽  
Author(s):  
Liu Dong ◽  
Zhou Lihui ◽  
Li Heng ◽  
Fu Qiang ◽  
Li Mo ◽  
...  

Abstract The evaluation of irrigation water efficiency plays an important role in the efficient use of agricultural water resources and the sustainable development of agriculture. In order to make the evaluation of irrigation water use efficiency indicators more comprehensive and scientific, this paper constructs a new optimal model of evaluation indicators. By combining the Driver-Pressure-State-Impact-Response (DPSIR) model with the Information Significance Difference (ISD) evaluation indicators model, a novel DPSIR-ISD evaluation indicators combination model was constructed. Ten riverside irrigation areas in the Sanjiang Plain of northeastern China were selected for analysis. The results show that the DPSIR-ISD model was used to reduce the number of indicators from 44 to 14; these 14 indicators reflected 91.88% of the original information. The DPSIR-ISD method proposed in this paper takes into account the completeness and simplicity of the indicators system, and is more in line with the actual situation in the field. These results can provide a simpler and more convenient system for optimizing indicators for the study of evaluation indicators used to analyze irrigation water use efficiency.


Sign in / Sign up

Export Citation Format

Share Document