plant water use
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 51)

H-INDEX

35
(FIVE YEARS 4)

2022 ◽  
Vol 176 ◽  
pp. 106538
Author(s):  
Eduardo Vicente ◽  
Mariano Moreno-de las Heras ◽  
Luis Merino-Martín ◽  
José Manuel Nicolau ◽  
Tíscar Espigares

Author(s):  
Adam Schreiner-McGraw ◽  
Hoori Ajami ◽  
Ray Anderson ◽  
Dong Wang

Accurate simulation of plant water use across agricultural ecosystems is essential for various applications, including precision agriculture, quantifying groundwater recharge, and optimizing irrigation rates. Previous approaches to integrating plant water use data into hydrologic models have relied on evapotranspiration (ET) observations. Recently, the flux variance similarity approach has been developed to partition ET to transpiration (T) and evaporation, providing an opportunity to use T data to parameterize models. To explore the value of T/ET data in improving hydrologic model performance, we examined multiple approaches to incorporate these observations for vegetation parameterization. We used ET observations from 5 eddy covariance towers located in the San Joaquin Valley, California, to parameterize orchard crops in an integrated land surface – groundwater model. We find that a simple approach of selecting the best parameter sets based on ET and T performance metrics works best at these study sites. Selecting parameters based on performance relative to observed ET creates an uncertainty of 27% relative to the observed value. When parameters are selected using both T and ET data, this uncertainty drops to 24%. Similarly, the uncertainty in potential groundwater recharge drops from 63% to 58% when parameters are selected with ET or T and ET data, respectively. Additionally, using crop type parameters results in similar levels of simulated ET as using site-specific parameters. Different irrigation schemes create high amounts of uncertainty and highlight the need for accurate estimates of irrigation when performing water budget studies.


2021 ◽  
Author(s):  
Steven A. Kannenberg ◽  
Jessica S. Guo ◽  
Kimberly A. Novick ◽  
William R.L. Anderegg ◽  
Xue Feng ◽  
...  

Author(s):  
Batta Kucheli

Guard cells control the stomata through which exchange of gas takes place in plants by balancing between CO2 uptake for photosynthesis and water loss through transpiration leading to ultimate plant water use efficiency (WUE). Due to climate change, sustainable agriculture will therefore require a major reduction in plant water use hence stomata have become potential target for manipulation. Understanding the signal mechanisms of stomata is therefore critically important in facilitating an understanding of stomatal regulation. The use of molecular tools and techniques to manipulate chloroplast metabolism specifically in the guard cells are needed to elucidate signals associated with stomatal behaviour towards crop improvement. Ability to assemble multiple or complex DNA molecules containing large number of genetic elements is an essential part of genetic engineering and in order to understand the involvement of guard cell photosynthesis in stomatal function, genetic manipulation of photosynthetic enzymes specifically in guard cells is necessary. This study employed the manipulation and construction of the enzyme Sedoheptulose-1,7-Bisphosphatase (SBpase) by using the golden gate cloning technique and the bioinformatics system- geneious. Constructs were designed to alter expression of the SBPase gene in a cell specific manner driven by the guard cell promoter KST1 in the model plant Arabidopsis thaliana L. The construct design for the sense plasmid vectors allowed efficient assembly of multiple DNA fragments in a single reaction based on the type IIs restriction enzyme. The potentials of manipulating guard cell specific metabolism are therefore enormous and the increase or decrease of photosynthetic genes  could be assessed and their impacts on plant development documented accordingly.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1249
Author(s):  
Carolina Álvarez-Maldini ◽  
Manuel Acevedo ◽  
Manuel Pinto

As a consequence of climate change, water scarcity has increased the use of the iso-/anisohydric concept with the aim of identifying anisohydric or drought-tolerant genotypes. Recently, Meinzer and colleagues developed a metric for discriminating between iso- and anisohydric behavior called the hydroscape, which describes a range in which stomata control leaf water potential (Ψ) with decreasing water availability, and it is linked to several water-regulation and drought-tolerance traits. Thus, our objective was to test the usefulness of the hydroscape in discriminating between iso- and anisohydric Prunus dulcis cultivars, a species that is widely cultivated in Mediterranean central Chile due to its ability to withstand water stress. Through a pot desiccation experiment, we determined that the hydroscape was able to discriminate between two contrasting Prunus cultivars; the more anisohydric cultivar had a hydroscape 4.5 times greater than that of the other cultivar, and the hydroscape correlated with other metrics of plant water-use strategies, such as the maximum range of daily Ψ variation and the Ψ at stomatal closure. Moreover, the photosynthesis rates were also differently affected between cultivars. The more isohydric cultivar, which had a smaller hydroscape, displayed a steeper photosynthesis reduction at progressively lower midday Ψ. This methodology could be further used to identify drought-tolerant anisohydric Prunus cultivars.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shenglan Li ◽  
Liang Fang ◽  
Josefine Nymark Hegelund ◽  
Fulai Liu

Increasing atmospheric CO2 concentrations accompanied by abiotic stresses challenge food production worldwide. Elevated CO2 (e[CO2]) affects plant water relations via multiple mechanisms involving abscisic acid (ABA). Here, two tomato (Solanum lycopersicum) genotypes, Ailsa Craig (AC) and its ABA-deficient mutant (flacca), were used to investigate the responses of plant hydraulic conductance to e[CO2] and drought stress. Results showed that e[CO2] decreased transpiration rate (E) increased plant water use efficiency only in AC, whereas it increased daily plant water consumption and osmotic adjustment in both genotypes. Compared to growth at ambient [CO2], AC leaf and root hydraulic conductance (Kleaf and Kroot) decreased at e[CO2], which coincided with the transcriptional regulations of genes of plasma membrane intrinsic proteins (PIPs) and OPEN STOMATA 1 (OST1), and these effects were attenuated in flacca during soil drying. Severe drought stress could override the effects of e[CO2] on plant water relation characteristics. In both genotypes, drought stress resulted in decreased E, Kleaf, and Kroot accompanied by transcriptional responses of PIPs and OST1. However, under conditions combining e[CO2] and drought, some PIPs were not responsive to drought in AC, indicating that e[CO2] might disturb ABA-mediated drought responses. These results provide some new insights into mechanisms of plant hydraulic response to drought stress in a future CO2-enriched environment.


Author(s):  
Amartya Saha ◽  
Elizabeth Boughton ◽  
Nuria Gomez-Casanovas ◽  
Haoyu Li ◽  
Nic McMillan ◽  
...  

Evapotranspiration (ET) constitutes the largest loss of water from subtropical grassland and wetland ecosystems, yet estimates have high uncertainty at the landscape scale as there is little information on plant water use. A major reason for this is the complexity and expense of field-based ET quantification methods such as agricultural lysimeters and eddy covariance systems. This study developed two different low-cost lysimeters – weighing-type and water level based, to measure ET under controlled conditions for single species as well as mixed grassland and wetland communities. Lysimeters were placed in an open sided shadehouse with a transparent roof to exclude rainfall. ET values were then compared with (i) Actual ET measurements from an eddy covariance tower onsite, (ii) vapor transport-based ET models - FAO Penman-Monteith, Modified Turc and Abtew Simple Radiation models, and (iii) ET data from the Florida Automated Weather Network. Both weighing-type and water level lysimeters showed seasonal patterns and annual magnitudes similar to the other ET methods. Annual ET measurements from weighing lysimeters (881-1278 mm for four plant species, n=5 per species) and water level lysimeters (1085 mm, n = 30) were similar to model estimates (1000-1200mm). Actual ET from eddy covariance was 722 mm for ten months (missing data for February and March), similar to lysimeter measurements for the dominant grass Paspalum notatum (885mm for 10 months). Low-cost lysimeters can easily inform regional ET models/remote sensing data lacking field validation and thus are potentially useful for water resources and ecosystem management in data-poor regions of the world.


Sign in / Sign up

Export Citation Format

Share Document