scholarly journals Fine powder, fine particles and ultra fine particles. Research in Hayashi ultra fine particle project.

1990 ◽  
Vol 56 (12) ◽  
pp. 2147-2151
Author(s):  
Masaaki ODA
Author(s):  
K.A. Gross ◽  
P. Fauchais ◽  
M. Vardelle ◽  
J. Tikkanen ◽  
J. Keskinen

Abstract The thermal spray process melts powder at very high temperatures and propels the molten material to the substrate to produce a coherent deposit. This heating produces a certain amount of vaporization of the feedstock. Upon exiting the plasma plume the fast cooling conditions lead to condensation of the vapor. An electrical low pressure impactor was used to monitor the concentration of ultra-fine particles at various radial and axial distances. Metal, namely iron powder, showed very high concentration levels which increase with distance. Ultra-fine particles from ZrO2-8Y2O3 reached a peak concentration at 6 cm. Use of an air barrier during spraying decreases the population of ultra-fine particles facilitating the production of a stronger coating.


1992 ◽  
Vol 286 ◽  
Author(s):  
Masaaki Oda ◽  
Isao Katsu ◽  
Michitaka Tsuneizumi ◽  
Eiji Fuchita ◽  
Seiichiro Kashu ◽  
...  

ABSTRACTUltra fine particles(UFP) of organic and inorganic materials can be formed by the gas evaporation method(gas condensation method). In the gas deposition method, particles formed by the gas evaporation method in an evaporation chamber are carried to another chamber (a deposition chamber) through a pipe. Particles are accelerated in the pipe with a gas flow and come out of a nozzle located in the deposition chamber which is being evacuated down to less than 10 torr and deposited on a substrate to form UFP films. The final speed of the particles depends on the pressure difference between the evaporation chamber and the deposition chamber. The particles speed exceeds 500m/s and adhesion strengths of the films reach 50OKgf/cm2 as well as vacuum deposition films in the condition that the pressure of the evaporation chamber is at 4 atms. Patterns of spots and lines with 50μm size and also wider films can be formed on a substrate without a masking system. The process is effective for repairing electric connecting lines or producing electrodes and condensers on an industrial scale.


Sign in / Sign up

Export Citation Format

Share Document