Vaporization and Ultra-Fine Particle Generation during the Plasma Spraying Process

Author(s):  
K.A. Gross ◽  
P. Fauchais ◽  
M. Vardelle ◽  
J. Tikkanen ◽  
J. Keskinen

Abstract The thermal spray process melts powder at very high temperatures and propels the molten material to the substrate to produce a coherent deposit. This heating produces a certain amount of vaporization of the feedstock. Upon exiting the plasma plume the fast cooling conditions lead to condensation of the vapor. An electrical low pressure impactor was used to monitor the concentration of ultra-fine particles at various radial and axial distances. Metal, namely iron powder, showed very high concentration levels which increase with distance. Ultra-fine particles from ZrO2-8Y2O3 reached a peak concentration at 6 cm. Use of an air barrier during spraying decreases the population of ultra-fine particles facilitating the production of a stronger coating.

Author(s):  
Behtash Tavakoli ◽  
Goodarz Ahmadi

Typical furniture inside residential or office buildings is made from materials that emit terpenes. Terpenes react with ozone in the air, and produce secondary organic aerosols (SOA). During summer the concentration of SOAs may exceed by a factor of two to five times the concentration in outdoor air. The high concentration of SOA could adversely influence the human health. The air ventilation inside the room as well as the particles’ Brownian motion causes the particles to mix and coagulate. The coagulation of SOAs due to their collision leads to an increase in sizes in time. Coagulation, surface growth and nucleation of particles are the mechanisms which change the particle size and concentration distribution. The particle size distribution is important as large particles sediment rapidly and they are not a health threat for residents while fine and ultra fine particles stay suspended in the air and could enter the human respiratory system. A typical office room with furniture and a manikin was modeled in this study. The indoor airflow was simulated and was followed by the analysis of dispersion and coagulation of particles using the moment method. Two types of ventilation systems were modeled, and the results were compared discussed.


1992 ◽  
Vol 286 ◽  
Author(s):  
Masaaki Oda ◽  
Isao Katsu ◽  
Michitaka Tsuneizumi ◽  
Eiji Fuchita ◽  
Seiichiro Kashu ◽  
...  

ABSTRACTUltra fine particles(UFP) of organic and inorganic materials can be formed by the gas evaporation method(gas condensation method). In the gas deposition method, particles formed by the gas evaporation method in an evaporation chamber are carried to another chamber (a deposition chamber) through a pipe. Particles are accelerated in the pipe with a gas flow and come out of a nozzle located in the deposition chamber which is being evacuated down to less than 10 torr and deposited on a substrate to form UFP films. The final speed of the particles depends on the pressure difference between the evaporation chamber and the deposition chamber. The particles speed exceeds 500m/s and adhesion strengths of the films reach 50OKgf/cm2 as well as vacuum deposition films in the condition that the pressure of the evaporation chamber is at 4 atms. Patterns of spots and lines with 50μm size and also wider films can be formed on a substrate without a masking system. The process is effective for repairing electric connecting lines or producing electrodes and condensers on an industrial scale.


Author(s):  
Chihiro Kaito ◽  
Yoshio Saito

The direct evaporation of metallic oxides or sulfides does not always given the same compounds with starting material, i.e. decomposition took place. Since the controll of the sulfur or selenium vapors was difficult, a similar production method for oxide particles could not be used for preparation of such compounds in spite of increasing interest in the fields of material science, astrophysics and mineralogy. In the present paper, copper metal was evaporated from a molybdenum silicide heater which was proposed by us to produce the ultra-fine particles in reactive gas as shown schematically in Figure 1. Typical smoke by this method in Ar gas at a pressure of 13 kPa is shown in Figure 2. Since the temperature at a location of a few mm below the heater, maintained at 1400° C , were a few hundred degrees centigrade, the selenium powder in a quartz boat was evaporated at atmospheric temperature just below the heater. The copper vapor that evaporated from the heater was mixed with the stream of selenium vapor,and selenide was formed near the boat. If then condensed by rapid cooling due to the collision with inert gas, thus forming smoke similar to that from the metallic sulfide formation. Particles were collected and studied by a Hitachi H-800 electron microscope.Figure 3 shows typical EM images of the produced copper selenide particles. The morphology was different by the crystal structure, i.e. round shaped plate (CuSe;hexagona1 a=0.39,C=l.723 nm) ,definite shaped p1 ate(Cu5Se4;Orthorhombic;a=0.8227 , b=1.1982 , c=0.641 nm) and a tetrahedron(Cu1.8Se; cubic a=0.5739 nm). In the case of compound ultrafine particles there have been no observation for the particles of the tetrahedron shape. Since the crystal structure of Cu1.8Se is the anti-f1uorite structure, there has no polarity.


2019 ◽  
Author(s):  
Chem Int

The assessment of groundwater is essential for the estimation of suitability of water for safe use. An attempt has been made to study the groundwater of selected areas of Punjab (Sheikhupura & Sahiwal) and Sindh (Sindh, Jawar Dharki and Dharki), Pakistan. The results indicate that pH, color and odor were all within limits of WHO that is pH ranges 6.5–8.5, colorless and odorless, respectively. The high values of suspended solids were observed in the Sindh-1 and Dharki samples. Microbiologically only Sahiwal and Jawar Dharki were found fit for drinking purpose. Trace metals analysis of Sheikhupura-1 and Sindh-1 showed that values do not fall within limits of WHO for Iron. The ionic concentration analysis showed that high bicarbonate (HCO3-), ions are present in the samples of Sahiwal and Dharki; Sindh-1 and Jawar Dharki samples showed very high concentration for chloride ions, all samples were satisfactory level for sulphate (SO42-), sodium, magnesium and phosphate ions except samples of Sindh-1 and Jawar Dharki. High concentration of calcium and potassium ions was observed in samples of Sindh-1, while all other samples were found fit for drinking purposes in respect of nitrate, nitrite and ammonium ions. The high concentration of Fluoride was found only in Sheikhupura-2 samples.


2021 ◽  
pp. 002199832110365
Author(s):  
Sônia MA Veroneze ◽  
Thais HS Flores-Sahagun ◽  
Ramón SC Paredes ◽  
Kestur Gundappa Satyanarayana

This paper presents a study about polypropylene-pine wood composites, both as filaments and products, coated with aluminum (Al) or copper (Cu), obtained through flame thermal spray process after subjecting the composites to thermal treatments in the second and third step of the study. Results revealed that a previous aluminum layer was needed in order to obtain copper coatings on the composites. The physical and mechanical properties of both metal coated composite filaments were also evaluated and compared with the uncoated composite filaments with and without heat treating these. Consequently, it was observed that the nature of the coating adhesion on the substrates was mechanical, and therefore abrasion blasting of filaments or the use of a higher wood fiber content in the composite improved the Al or Cu adhesion. Also, it was observed that extruded wood fiber/PP filaments should not be cooled in water because pieces might be molded directly once the moisture affects the metal coatings adhesion onto the substrates.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yingfeng Yang ◽  
Hanze Ying ◽  
Zhixia Li ◽  
Jiang Wang ◽  
Yingying Chen ◽  
...  

AbstractMacrocycles are unique molecular structures extensively used in the design of catalysts, therapeutics and supramolecular assemblies. Among all reactions reported to date, systems that can produce macrocycles in high yield under high reaction concentrations are rare. Here we report the use of dynamic hindered urea bond (HUB) for the construction of urea macrocycles with very high efficiency. Mixing of equal molar diisocyanate and hindered diamine leads to formation of macrocycles with discrete structures in nearly quantitative yields under high concentration of reactants. The bulky N-tert-butyl plays key roles to facilitate the formation of macrocycles, providing not only the kinetic control due to the formation of the cyclization-promoting cis C = O/tert-butyl conformation, but also possibly the thermodynamic stabilization of macrocycles with weak association interactions. The bulky N-tert-butyl can be readily removed by acid to eliminate the dynamicity of HUB and stabilize the macrocycle structures.


Author(s):  
Yasuyoshi Fukuda ◽  
Misako Higashiya ◽  
Takahiro Obata ◽  
Keita Basaki ◽  
Megumi Yano ◽  
...  

Abstract To cryopreserve cells, it is essential to avoid intracellular ice formation during cooling and warming. One way to achieve this is to convert the water inside the cells into a non-crystalline glass. It is currently believed that to accomplish this vitrification, the cells must be suspended in a very high concentration (20–40%) of a glass-inducing solute, and subsequently cooled very rapidly. Herein, we report that this belief is erroneous with respect to the vitrification of one-cell rat embryos. In the present study, one-cell rat embryos were vitrified with 5 μL of EFS10 (a mixture of 10% ethylene glycol, 27% Ficoll, and 0.45 M sucrose) in cryotubes at a moderate cooling rate, and warmed at various rates. Survival was assessed according to the ability of the cells to develop into blastocysts and to develop to term. When embryos were vitrified at a 2,613 °C/min cooling rate and thawed by adding 1 mL of sucrose solution (0.3 M, 50 °C) at a warming rate of 18,467 °C/min, 58.1 ± 3.5% of the EFS10-vitrified embryos developed into blastocysts, and 50.0 ± 4.7% developed to term. These rates were similar to those of non-treated intact embryos. Using a conventional cryotube, we achieved developmental capabilities in one-cell rat embryos by rapid warming that were comparable to those of intact embryos, even using low concentrations (10%) of cell-permeating cryoprotectant and at low cooling rates.


Sign in / Sign up

Export Citation Format

Share Document