scholarly journals Property Analysis of Adversarially Robust Representation

2021 ◽  
Vol 87 (1) ◽  
pp. 83-91
Author(s):  
Yoshihiro FUKUHARA ◽  
Takahiro ITAZURI ◽  
Hirokatsu KATAOKA ◽  
Shigeo MORISHIMA
2021 ◽  
Vol 50 ◽  
pp. 101328
Author(s):  
Nathan Fox ◽  
Laura J. Graham ◽  
Felix Eigenbrod ◽  
James M. Bullock ◽  
Katherine E. Parks

2020 ◽  
Vol 13 (1) ◽  
pp. 48
Author(s):  
Hanjie Song ◽  
Chao Li ◽  
Jinhai Zhang ◽  
Xing Wu ◽  
Yang Liu ◽  
...  

The Lunar Penetrating Radar (LPR) onboard the Yutu-2 rover from China’s Chang’E-4 (CE-4) mission is used to probe the subsurface structure and the near-surface stratigraphic structure of the lunar regolith on the farside of the Moon. Structural analysis of regolith could provide abundant information on the formation and evolution of the Moon, in which the rock location and property analysis are the key procedures during the interpretation of LPR data. The subsurface velocity of electromagnetic waves is a vital parameter for stratigraphic division, rock location estimates, and calculating the rock properties in the interpretation of LPR data. In this paper, we propose a procedure that combines the regolith rock extraction technique based on local correlation between the two sets of LPR high-frequency channel data and the common offset semblance analysis to determine the velocity from LPR diffraction hyperbola. We consider the heterogeneity of the regolith and derive the relative permittivity distribution based on the rock extraction and semblance analysis. The numerical simulation results show that the procedure is able to obtain the high-precision position and properties of the rock. Furthermore, we apply this procedure to CE-4 LPR data and obtain preferable estimations of the rock locations and the properties of the lunar subsurface regolith.


2013 ◽  
Vol 25 (14) ◽  
pp. 7955-7958 ◽  
Author(s):  
Wanwan Ding ◽  
Juan Chen ◽  
Jianye Liu ◽  
Zengkai Pang ◽  
Ruifang Guan

2011 ◽  
Vol 255-260 ◽  
pp. 1989-1993
Author(s):  
Chuan Liang Xia ◽  
Zhen Dong Liu ◽  
Peng Sun

Petri net synthesis can avoid the state exploration problem by guaranteeing the correctness in the Petri net while incrementally expanding the net. This paper proposes the conditions imposed on a synthesis shared a kind of subnet under which the following structural properties will be preserved: repetitiveness, consistency, structural boundedness, conservativeness, structural liveness, P-invariant and T-invariant.


Sign in / Sign up

Export Citation Format

Share Document