scholarly journals Base metal mineralization of the Kolyma terrain in Northeast Russia: Overview and genetic classification

LITOSFERA ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 717-730
Author(s):  
A. N. Glukhov

Research subject. The Prikolyma terrain located in the Northeastern part ofRussia constitutes a long-lived Precambrian thrust-faulted structure hosting numerous Cu, Pb and Zn deposits of different types.Materials and methods. The mineralization of the terrain was examined during a course of research and exploration works over the 2007–2012. The rock geochemistry was studied using ICP-OES analysis at the Stuart Geochemistry and Essay laboratory (Moscow). The microprobe analysis of minerals was carried out at the facilities of the Far Eastern Branch of the Russian Academy of Sciences (Magadan) using a Camebax X-ray microanalyzer. The isotopic ratios of sulphur in sulphides were measured using a Finnigan MAT 253 isotope mass spectrometer.Results. The porphyry-copper deposit Nevidimka is represented by skarns and sulphide-quartz stockworks embedded in porphyry granites. The vein deposits Opyt and Glukhoye constitute sulphide-carbonate-quartz veins, the composition of which corresponds to copper-polymetallic ores of the peripheral parts of the copper-porphyry formation. These deposits feature a similar geochemistry and composition of sulphides and sulphur isotopes, which is characteristic of the Riphean complexes of the Prikolyma terrain. The stratiform Pb-Zn veins Nadezhda-3 and Khaya enclosed in Proterozoic dolomites represent parallel-bedding disseminated sulphides. The composition of these ores indicates their diagenetic origin. Tne stratiform copper deposit Oroyok is embedded in Proterozoic shales and can be referred to sediment-hosted copper deposits of a transgressive type.Conclusions. The diversity of Cu-Pb-Zn mineralization types in the Prikolyma terrain is established to have resulted from multiple cyclic changes of the geodynamic ore formation regime. During each such cycle, syngenetic mineralization was followed first by epigenetic and then by vein mineralization. The mobile, thrust-faulted structure caused repeated rejuvenation of ores, which inherited the geochemical features of hosting rocks. 


2016 ◽  
Vol 111 (1) ◽  
pp. 1-28 ◽  
Author(s):  
Karen J. Correa ◽  
Osvaldo M. Rabbia ◽  
Laura B. Hernández ◽  
David Selby ◽  
Marcelo Astengo


2021 ◽  
Author(s):  
Lawrence Carter ◽  
Simon Tapster ◽  
Ben Williamson ◽  
Yannick Buret ◽  
David Selby ◽  
...  

Abstract Porphyry-type deposits are a vital source of green technology metals such as copper and molybdenum. They typically form in subduction-related settings from large, long-lived magmatic systems. The most widely accepted model for their formation requires that mantle-derived magmas undergo a multi-million year timescale ramp-up in volatiles and ore-forming constituents in mid- to lower-crustal reservoirs, however this does not explain why porphyry deposits are absent from the vast majority of arc magmatic systems. To address this, we have carried out geochemical and geochronological studies on the tilted, ~8 km depth equivalent, cross-section through the classic Yerington magmatic system, Nevada. Here we show that the magmas underwent a major and abrupt change in chemistry over a period of 100 kyrs which is coincident with the initiation of ore formation. This is attributed to a wholesale switch in the magmatic plumbing system whereby volatile-rich granitic melts were extracted from an estimated ~30 km depth and transported to shallow levels (~3-8 km) where exsolving fluids were focussed through highly permeable pathways to form porphyry deposits. The change in magma chemistry is documented across the entire plutonic to volcanic record. Its rapidity suggests that the increase in a magma’s ore-forming potential is not solely driven by tectonic factors, that occur over multi-million year scales, but through internal processes within the melt evolution zone, operating at more than an order of magnitude faster than previously envisaged. This short timescale narrows the temporal-geochemical footprint of magmas associated with porphyry mineralisation which will aid in targeting the next generation of ore deposits.







Geologos ◽  
2013 ◽  
Vol 19 (4) ◽  
pp. 301-320 ◽  
Author(s):  
Sina Asadi ◽  
Farid Moore ◽  
Alireza Zarasvandi ◽  
Majid Khosrojerdi

Abstract Hydrothermal alteration of the Meiduk porphyry copper deposit, south of the Kerman Cenozoic magmatic arc and southeast of the central Iranian volcano-plutonic belt has resulted in three stages of mineralisation characterised by veins and veinlets. These are, from early to late: (1) quartz + K-feldspar + biotite + pyrite ± chalcopyrite ± pyrrhotite ± magnetite (early potassic alteration and type-A veins); (2) quartz + chalcopyrite + pyrite + bornite + pyrrhotite + K- -feldspar + biotite + magnetite (potassic-sericitic alteration and type-B veins); and (3) quartz + pyrite + chalcopyrite + sericite (sericitic alteration and type-C veins). Most ores were formed during stages 2 and 3. Three main types of fluid inclusions are distinguished based on petrographical, microthermometrical and laser Raman spectroscopy analyses, i.e. type I (three-phase aqueous inclusions), type II (three-phase liquid-carbonic inclusions) and type III (multi-phase solid inclusions). The fluid inclusions in quartz veins of the stages are mainly homogenised at 340-530°C (stage 1), 270-385°C (stage 2) and 214-350°C (stage 3), respectively, with salinities of 3.1-16 wt.% NaCl equivalent, 2.2-43 wt.% NaCl equivalent and 8.2-22.8 wt.% NaCl equivalent, respectively. The estimated trapping pressures are 97.9-123.6 MPa (3.7-4.6 km) in stage 1 and 62.5-86.1 MPa (2.3-3.1 km) in stage 2, respectively. These fluid inclusions are homogenised in different ways at similar temperatures, suggesting that fluid boiling took place in stages 2 and 3. The fluid system evolved from high-temperature, medium-salinity, high-pressure and CO2-rich to low-temperature, low-pressure, high-salinity and CO2-poor, with fluid boiling being the dominating mechanism, followed by input of meteoric water. CO2 escape may have been a factor in increasing activities of NaCl and S2- in the fluids, diminishing the oxidation of the fluids from stage 1 to 3. The result was precipitation of sulphides and trapping of multi-phase solid inclusions in hydrothermal quartz veins.





2018 ◽  
Vol 481 (3) ◽  
pp. 281-284
Author(s):  
E. Kolova ◽  
◽  
H. Savva ◽  
A. Sidorov ◽  
A. Volkov ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document