melt evolution
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 7)

H-INDEX

19
(FIVE YEARS 0)

2022 ◽  
Vol 165 ◽  
pp. 108642
Author(s):  
Ruiyu Sun ◽  
Liangpeng Wu ◽  
Wen Ding ◽  
Ronghua Chen ◽  
Wenxi Tian ◽  
...  


2021 ◽  
Author(s):  
Lawrence Carter ◽  
Simon Tapster ◽  
Ben Williamson ◽  
Yannick Buret ◽  
David Selby ◽  
...  

Abstract Porphyry-type deposits are a vital source of green technology metals such as copper and molybdenum. They typically form in subduction-related settings from large, long-lived magmatic systems. The most widely accepted model for their formation requires that mantle-derived magmas undergo a multi-million year timescale ramp-up in volatiles and ore-forming constituents in mid- to lower-crustal reservoirs, however this does not explain why porphyry deposits are absent from the vast majority of arc magmatic systems. To address this, we have carried out geochemical and geochronological studies on the tilted, ~8 km depth equivalent, cross-section through the classic Yerington magmatic system, Nevada. Here we show that the magmas underwent a major and abrupt change in chemistry over a period of 100 kyrs which is coincident with the initiation of ore formation. This is attributed to a wholesale switch in the magmatic plumbing system whereby volatile-rich granitic melts were extracted from an estimated ~30 km depth and transported to shallow levels (~3-8 km) where exsolving fluids were focussed through highly permeable pathways to form porphyry deposits. The change in magma chemistry is documented across the entire plutonic to volcanic record. Its rapidity suggests that the increase in a magma’s ore-forming potential is not solely driven by tectonic factors, that occur over multi-million year scales, but through internal processes within the melt evolution zone, operating at more than an order of magnitude faster than previously envisaged. This short timescale narrows the temporal-geochemical footprint of magmas associated with porphyry mineralisation which will aid in targeting the next generation of ore deposits.



Author(s):  
Vanina López de Azarevich ◽  
Paolo Fulignati ◽  
Anna Gioncada ◽  
Miguel Azarevich

AbstractThe pegmatite district of El Quemado (NW Pampean Ranges, NW Argentina) hosts several Ordovician pegmatite bodies of the LCT (Li, Cs, Ta) type. We present paragenetic assemblages for a set of samples from two of the El Quemado pegmatite groups, Santa Elena and Tres Tetas, and mineral chemistry analyses for gahnite, columbite-group minerals, tourmaline, micas, albite, microcline, and discuss the relation between their major element composition and the degree of evolution of pegmatite melts. The chemical composition of rare element minerals allows recognizing an evolutive trend reaching highly differentiated compositions, with complex paragenetic assemblages including Li-, Zr-, U-, Zn-, P-, Mn- and Ta-bearing minerals. The temperature of crystallization during the magmatic phase was below 400 °C. Non-pervasive hydrothermal alteration, testified by a moderate presence of phyllosilicates, affected the pegmatite bodies. Chlorite geothermometry indicates that the circulation of post-magmatic hydrothermal fluids occurred at a temperature ranging between 200 °C and 250 °C. The mineralogical features recognized in the El Quemado pegmatite rocks have implications for the metallogenesis of the region, suggesting that the pegmatites potentially contributed to the genesis of Ta-Nb oxide placer mineralizations.



Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 408
Author(s):  
Anastasiya Starikova ◽  
Ilya Prokopyev ◽  
Anna Doroshkevich ◽  
Alexey Ragozin ◽  
Vasily Chervyakovsky

Olivine from the deep mantle-derived rocks, such as ultramafic lamprophyres, carries important information about the composition of the mantle source, the processes of mantle metasomatism, the origin of specific silicate-carbonate melts, as well as the composition and mechanisms of crystallization of these rocks. Textures and compositions of olivine from the carbonate-rich ultramafic lamprophyres (aillikites) of the Terina complex, along with their mineral and melt inclusions, exposed that olivines have different sources. Two populations of olivines were considered: macrocrysts (>1 mm) and groundmass olivines (<1 mm). Groundmass olivines are phenocrysts and characterized by weak variations in Mg# (84–86.5), a sharp increase in Ca and Ti contents, and a decrease in Ni and Cr from core to rim. They have higher concentrations of Li, Cu, Ti, and Na compared to macrocrysts. Among the macrocrysts, the following populations are observed: (1) high-Mg olivines (Mg# 89–91) with high Ni and low Ti contents, which are interpreted as xenocrysts from the slightly depleted lherzolite mantle; (2) high-Ca olivines (Mg# 84–88, CaO 0.13–0.21 wt %), which have patterns similar to groundmass olivines and are interpreted as cumulates of early portions of aillikite melt; (3) macrocrysts with wide variations in Mg# (73–88), low CaO contents (0.04–0.11 wt %), and positive slope in Ca vs. Al and negative slope in Ca vs. Mn, which are interpreted as disintegrated megacrysts from the Cr-poor megacryst suite. The megacryst suite could have been formed in the pre-trap period during the melting of the metasomatized subcontinental lithospheric mantle (SCLM). The aillikite melt evolution is traced by secondary melt inclusions in olivine macrocrysts: early phlogopite-diopside-calcite-apatite association, containing Ti-magnetite and ilmenite, is followed by an association with magnetite and sulfides (pyrrhotite and pentlandite); finally, at a late stage, inclusions with a predominance of Ca-Na-carbonates and sulfates and enriched in U, Th, Y, REEs, Sr, and Ba were captured.



2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Yanhong Chen ◽  
Yaoling Niu ◽  
Meng Duan ◽  
Hongmei Gong ◽  
Pengyuan Guo

AbstractThe iron isotope contrast between mid-ocean ridge basalts and abyssal peridotites is far greater than can be explained by mantle melting alone. Here we investigate a suite of mid-ocean ridge magma chamber rocks sampled by the Ocean Drilling Project Hole 735B in the Atlantis Bank of the Indian Ocean. We report major and trace element geochemistry from these rocks and measure their iron isotope compositions to investigate the potential role of fractional crystallization during melt evolution. We observe a large range of δ56Fe that defines a significant inverse curvilinear correlation with bulk rock MgO/FeOT. These data confirm that δ56Fe in the melt increases as fractional crystallization proceeds but, contrary to expectation, δ56Fe continues to increase even when oxides begin to crystallize. We conclude that iron isotope fractionation through fractional crystallization during the evolution of mid-ocean ridge basalts from abyssal peridotites reconciles the disparity in isotopic compositions between these two lithologies.



2021 ◽  
Author(s):  
Riikka Fred ◽  
Aku Heinonen ◽  
Jussi S. Heinonen

&lt;p&gt;The parental magmas of massif-type anorthosites are suggested to originate from either the mantle or lower crust. If the source is the mantle, the magmas are presumed to have undergone crustal assimilation prior to plagioclase crystallization, which has produced melt compositions similar to anorthosite parental magmas (high-Al gabbros/basalts). If the source is the lower crust, the produced anorthosite parental melts are presumed to be monzodioritic (jotunitic) in composition. However, many studies have suggested that the monzodioritic rocks related to massif-type anorthosites rather represent residual melt compositions left after anorthosite fractionation. In this study, we have used the most recent thermodynamic modeling tools, Magma Chamber Simulator (MCS) and Rhyolite-MELTS to conduct partial melting, assimilation-fractional crystallization (AFC), and fractional crystallization (FC) models to address the unresolved questions about the source and compositional evolution of the anorthosite parental magmas.&lt;/p&gt;&lt;p&gt;AFC models were conducted at high lower crustal pressures (1000 MPa) by using MCS. In the models, we used four different sublithospheric mantle partial melt compositions and 11 different assimilants with representative average lower crustal compositions compiled from literature. In addition, equilibrium partial melting of the same lower crustal compositions was modeled separately by using rhyolite-MELTS. The melt major element compositions produced by both modeling tools were compared to suggested natural anorthosite parental magma compositions. Finally, to further study the evolution of these melts after their generation, FC models were run at different crustal pressures (1000-100 MPa) by using MCS. These differentiated melt compositions were compared to a global array of monzodioritic rocks presumed to represent residual melts left after anorthosite fractionation.&lt;/p&gt;&lt;p&gt;The preliminary modeling results point towards the mantle being a more suitable candidate for the source of the anorthosite parental magmas and that the parental magma compositions are better represented by high-Al gabbros than monzodioritic rocks: assimilation of mafic lower crustal material by mantle-derived magmas produces melts that are the most fitting analogues. Somewhat similar melts can also be produced by directly melting the lower crust, but this requires the crust to melt completely, which we consider improbable. The models further suggest fractional crystallization of high-Al gabbroic parental magmas produce residual melt evolution trends similar to the array of anorthosite-related monzodioritic rocks.&lt;/p&gt;



2021 ◽  
Author(s):  
Maya Kopylova ◽  
Anna Nosova ◽  
Ludmila Sazonova ◽  
Alexey Vozniak ◽  
Alexey Kargin ◽  
...  

&lt;p&gt;The study reports petrography, bulk major and trace element compositions of lamprophyric Devonian dykes in three areas of the Kola Alkaline Carbonatite Province (N Europe). Dykes in one of these areas, Kandalaksha, are not associated with a massif, while dykes in Kandaguba and Turij Mys occur adjacent (&lt; 5 km) to coeval central multiphase ultramafic alkaline-carbonatitic massifs. Kandalaksha dyke series consists of aillikites - phlogopite carbonatites and monchiquites. Kandaguba dykes range from monchiquites to nephelinites and phonolites; Turij Mys dykes represent alnoites, monchiquites, foidites, turjaites and carbonatites. Some dykes show extreme mineralogical and textural heterogeneity and layering we ascribe to fluid separation. The crystallization and melt evolution of the dykes were modelled with Rhyolite-MELTS and compared with the observed order and products of crystallization. Our results suggest that the studied rocks were related by fractional crystallization and liquid immiscibility. Primitive melts of alkaline picrites or olivine melanephelinites initially evolved at P=1.5-0.8 GPa without a SiO&lt;sub&gt;2&lt;/sub&gt; increase due to abundant clinopyroxene crystallization controlled by the CO&lt;sub&gt;2&lt;/sub&gt;-rich fluid. At 1-1.1 GPa the Turij Mys melts separated immiscible carbonate melt, which subsequently exsolved carbothermal melts extremely rich in trace elements. Kandaguba and Turij Mys melts continued to fractionate at lower pressures in the presence of hydrous fluid to the more evolved nephelinite and phonolite melts. The studied dykes highlight the critical role of the parent magma chamber in crystal fractionation and magma diversification. The Kandalaksha dykes may represent a carbonatite - ultramafic lamprophyres association, which fractionated at 45- 20 km in narrow dykes on ascent to the surface and could not get more evolved than monchiquite. In contrast, connections of Kandaguba and Turij Mys dykes to their massif magma chambers ensured the sufficient time for fractionation, ascent and a polybaric evolution. This longevity generated more evolved rock types with the higher alkalinity and an immiscible separation of carbonatites.&lt;/p&gt;



2020 ◽  
Author(s):  
Emilie Bruand ◽  
Clementine Antoine ◽  
Martin Guitreau ◽  
Jean-Luc Devidal

&lt;p&gt;A novel way to investigate the petrogenesis of ancient poly-metamorphosed terranes is to use zircon as a vessel and study protected mineral inclusions which are sensitive to melt evolution such as apatite. Recent contributions have shown that zircon-hosted apatite inclusions of unmetamorphosed granitoids can provide valuable petrogenetic information about a given pluton and, in turn, represent a way to circumvent effects of metamorphism. Yet, the impact of metamorphism on apatite inclusion has never been studied in detail. To address the issue of chemical and isotopic preservation of primary signals in apatite crystals both in the matrix and armored within zircons, we have studied apatite crystals from four 3.6-4.0 Ga orthogneisses of TTG affinity from the Acasta Gneiss Complex (Canada). Our results demonstrate that U-Th-Pb isotope systematics in matrix apatite crystals are reset at the time of the Wopmay orogen (1.8-1.7 Ga) whereas primary REE signatures were preserved in many crystals. On the contrary, zircon-hosted apatite inclusions all preserved primary REE signatures despite U-Th-Pb isotope systematics giving ages between 1.7 and 4.0 Ga. We interpret the variable resetting of these ages as a consequence of radiation damage accumulation in zircon lattice. Only the most pristine zircon has an apatite inclusion with a concordant age consistent with the magmatic age of the zircon (4.0 Ga). In addition, our results show that apatite crystals from TTG have distinct REE composition from post-Archean granitoids apatites, and that even apatites with reset ages preserved some of the chemical signatures characterizing TTG compositions (e.g. HREE). This capacity to retain primary information together with its discriminating power for granitoids makes apatite a very valuable tool for reconstructing the nature and evolution of ancient crustal rocks through the use of either detrital minerals or detrital-zircon hosting inclusions.&lt;/p&gt;



2020 ◽  
Author(s):  
Alexander Andrew Iveson ◽  
◽  
Madeleine C.S. Humphreys ◽  
Frances E. Jenner ◽  
Barbara E. Kunz ◽  
...  
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document