scholarly journals PIV measurements on the formation of the flow field and aerosol particle distribution in a turbulent square duct flow

Author(s):  
T. Barth ◽  
M. Banowski ◽  
U. Hampel
Author(s):  
Tong-Miin Liou ◽  
Shun-Nan Liou ◽  
K. H. Chang
Keyword(s):  

2013 ◽  
Vol 56 ◽  
pp. 217-224 ◽  
Author(s):  
Md. Saidul Islam ◽  
Rabindra Nath Mondal
Keyword(s):  

1996 ◽  
Vol 31 (5) ◽  
pp. 417-423 ◽  
Author(s):  
Weizhen Lu ◽  
Andrew T. Howarth ◽  
Nor Adam ◽  
Saffa B. Riffat

Author(s):  
Jun Liu ◽  
Qiang Du ◽  
Guang Liu ◽  
Pei Wang ◽  
Hongrui Liu ◽  
...  

To increase the power output without adding additional stages, ultra-high bypass ratio engine, which has larger diameter low pressure turbine, attracts more and more attention because of its huge advantage. This tendency will lead to aggressive (high diffusion) intermediate turbine duct design. Much work has been done to investigate flow mechanisms in this kind of duct as well as its design criterion with numerical and experimental methods. Usually intermediate turbine duct simplified from real engine structure was adopted with upstream and downstream blades. However, cavity purge mass flow exists to disturb the duct flow field in real engine to change its performance. Naturally, the wall vortex pairs would develop in different ways. In addition to that, purge flow rate changes at different engine representative operating conditions. This paper deals with the influence of turbine purge flow on the aerodynamic performance of an aggressive intermediate turbine duct. The objective is to reveal the physical mechanism of purge flow ejected from the wheel-space and its effects on the duct flow field. Ten cases with and without cavity are simulated simultaneously. On one hand, the influence of cavity structure without purge flow on the flow field inside duct could be discussed. On the other hand, the effect of purge flow rate on flow field could be analyzed to investigate the mechanisms at different engine operating conditions. According to this paper, cavity structure is beneficial for pressure loss. And the influence concentrates near hub and duct inlet.


2013 ◽  
Vol 54 (5) ◽  
Author(s):  
P. H. Geoghegan ◽  
N. A. Buchmann ◽  
J. Soria ◽  
M. C. Jermy

Author(s):  
Takayuki Mori ◽  
Risa Kimoto ◽  
Kenji Naganuma

Flow field around a marine propeller was measured by means of PIV technique in a large cavitation tunnel of the Naval Systems Research Center, TRDI/Ministry of Defense, Japan. Test section of the tunnel is 2m(W) × 2m(H) × 10m(L) and it contains 2000m3 of water. 2-dimensional PIV (2-D PIV) and stereo PIV (SPIV) measurements were made for a five-bladed highly skewed marine propeller. In the case of 2-D PIV measurements, high spatial resolution measurements were possible by seeding relatively small amount of tracer particles. Phase-averaged flow fields showed details on evolution of tip vortices. In the case of SPIV measurements, much larger amounts of tracer particles were required, and it was difficult to perform high resolution measurements. Phase averaged velocity profiles from SPIV measurements showed good agreement with 2-D PIV-measured results. PIV-measured results were compared with results of LDV measurements. Although PIV-measured velocity profiles showed fairly good agreements with LDV-measured results, some discrepancies were found at the blade tip region.


Author(s):  
A. Naguib ◽  
L. Hudy ◽  
W. M. Humphreys

Simultaneous wall-pressure and PIV measurements are used to study the conditional flow field associated with surface-pressure generation in a separating/reattaching flow established over a fence-with-splitter-plate geometry. The conditional flow field is captured using linear and quadratic stochastic estimation based on the occurrence of positive and negative pressure events in the vicinity of the mean reattachment location. The results shed light on the dominant flow structures associated with significant wall-pressure generation. Furthermore, analysis based on the individual terms in the stochastic estimation expansion shows that both the linear and non-linear flow sources of the coherent (conditional) velocity field are equally important contributors to the generation of the conditional surface pressure.


Sign in / Sign up

Export Citation Format

Share Document