PIV Measurements of Propeller Flow Field in a Large Cavitation Tunnel

Author(s):  
Takayuki Mori ◽  
Risa Kimoto ◽  
Kenji Naganuma

Flow field around a marine propeller was measured by means of PIV technique in a large cavitation tunnel of the Naval Systems Research Center, TRDI/Ministry of Defense, Japan. Test section of the tunnel is 2m(W) × 2m(H) × 10m(L) and it contains 2000m3 of water. 2-dimensional PIV (2-D PIV) and stereo PIV (SPIV) measurements were made for a five-bladed highly skewed marine propeller. In the case of 2-D PIV measurements, high spatial resolution measurements were possible by seeding relatively small amount of tracer particles. Phase-averaged flow fields showed details on evolution of tip vortices. In the case of SPIV measurements, much larger amounts of tracer particles were required, and it was difficult to perform high resolution measurements. Phase averaged velocity profiles from SPIV measurements showed good agreement with 2-D PIV-measured results. PIV-measured results were compared with results of LDV measurements. Although PIV-measured velocity profiles showed fairly good agreements with LDV-measured results, some discrepancies were found at the blade tip region.

2009 ◽  
Vol 16 (3) ◽  
pp. 11-17 ◽  
Author(s):  
J. Szantyr ◽  
R. Biernacki ◽  
P. Flaszyński ◽  
P. Dymarski ◽  
M. Kraskowski

An experimental and numerical study of the vortices generated by hydrofoils The article presents the results of the research project concerning the process of formation of the tip vortices shed from hydrofoils of different geometry in different flow conditions. Three hydrofoils resembling the contemporary marine propeller blades have been selected for the study. The experimental part of the project consisted of the LDA measurements of the velocity field in three cross-sections of the vortex generated by the hydrofoils in the cavitation tunnel. The numerical part of the project consisted of calculations of the corresponding velocity field by means of three computer codes and several selected turbulence models. The comparative analysis of the experimental and numerical results, leading to the assessment of the accuracy of the numerical methods, is included.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Wenbo Shi ◽  
Jie Li ◽  
Zhao Yang ◽  
Heng Zhang

High efficiency and low fuel consumption make the contrarotating open rotor (CROR) system a viable economic and environmentally friendly powerplant for future aircraft. While the potential benefits are well accepted, concerns still exist with respect to the vibrations and noise caused by the aerodynamic interactions of CROR systems. In this paper, emphasis is placed on the detailed analysis of the aerodynamic interactions between the front and aft propellers of a puller CROR configuration. For the first step, unsteady Reynolds-averaged Navier-Stokes (URANS) simulations coupled with dynamic patched grid technology are implemented on the isolated single-rotating propeller (SRP) configuration in various operating conditions in order to test the accuracy and feasibility of the numerical approach. The numerical results are verified by a wind tunnel test, showing good agreements with the experimental data. Subsequently, the URANS approach is applied to the CROR configuration. The numerical results obtained through the URANS approach help to improve the understanding of the complex flow field generated by the CROR configuration, and the comparison of SRP flow field and CROR flow field allows for a detailed analysis of the aerodynamic interactions of the front propeller blade wakes and tip vortices with the aft propeller. The main reason of the aerodynamic interactions is the mutual effects of the blade tip vortices, and the aft propeller reduces the strength of the blade tip vortices of the front propeller. Aerodynamic interactions will lead to the periodic oscillations of the aerodynamic forces, and the frequency of the oscillations is linked to the blade numbers. In addition, a CROR has a larger thrust and power coefficient than that of the SRP configuration in the same operating conditions. The URANS approach coupled with a dynamic patched grid method is tested to be an efficient and accurate tool in the analysis of propeller aerodynamic interactions.


2021 ◽  
pp. 1-33
Author(s):  
Eric DeShong ◽  
Shawn Siroka ◽  
Reid A. Berdanier ◽  
Karen A. Thole

Abstract The clearance that exists between the casing and turbine blade tips is one of the key drivers of efficiency in gas turbine engines. For this reason, engine manufacturers utilize precise manufacturing techniques and may employ clearance control systems to minimize tip clearances to reduce associated losses. Despite these efforts, turbines typically exhibit some nominal casing ovality or rotor-casing eccentricity, and changes to blade tip clearance during operation commonly occur due to thermal and mechanical stresses. The present study investigates non-axisymmetric tip clearance effects by creating a rotor-casing eccentricity in a one-stage axial test turbine operating in a continuous-duration mode at engine relevant conditions with engine representative hardware. A magnetic levitation bearing system was leveraged to move the turbine shaft to vary the rotor-casing eccentricity without test section disassembly. The results of this study indicate that rotor-casing eccentricity does not affect overall turbine efficiency over the range that was tested, but does locally influence efficiency and the rotor exit flow field. Comparisons of flow angle and secondary flow kinetic energy agreed with previous studies and existing analytical methods, respectively. Collectively, these results indicate that tip clearance can be studied locally on an eccentric rotor.


2013 ◽  
Vol 54 (5) ◽  
Author(s):  
P. H. Geoghegan ◽  
N. A. Buchmann ◽  
J. Soria ◽  
M. C. Jermy

2020 ◽  
Author(s):  
Diana De Padova ◽  
Michele Mossa

Turbulence and undertow currents play an important role in surf-zone mixing and transport processes; therefore, their study is fundamental for the understanding of nearshore dynamics and the related planning and management of coastal engineering activities. Pioneering studies qualitatively described the features of breakers in the outer region of the surf zone. More detailed information on the velocity field under spilling and plunging breakers can be found in experimental works, where single-point measurement techniques, such as Hot Wire Anemometry and Laser Doppler Anemometry (LDA), were used to provide maps of the flow field in a time-averaged or ensemble-averaged sense. Moreover, the advent of non-intrusive measuring techniques, such as Particle Image Velocimetry (PIV) provided accurate and detailed instantaneous spatial maps of the flow field. However, by correlating spatial gradients of the measured velocity components, the instantaneous vorticity maps could be deduced. Moreover, the difficulties of measuring velocity due to the existence of air bubbles entrained by the plunging jet have hindered many experimental studies on wave breaking encouraging the development of numerical model as useful tool to assisting in the interpretation and even the discovery of new phenomena. Therefore, the development of an WCSPH method using the RANS equations coupled with a two-equation k–ε model for turbulent stresses has been employed to study of the turbulence and vorticity distributions in in the breaking region observing that these two aspects greatly influence many coastal processes, such as undertow currents, sediment transport and action on maritime structures.


2018 ◽  
Vol 24 (12) ◽  
pp. 9058-9062
Author(s):  
Wai Heng Choong ◽  
Kiam Beng Yeo ◽  
Fadzlita Mohd Tamiri ◽  
M. Noh Dalimin

Author(s):  
A. Naguib ◽  
L. Hudy ◽  
W. M. Humphreys

Simultaneous wall-pressure and PIV measurements are used to study the conditional flow field associated with surface-pressure generation in a separating/reattaching flow established over a fence-with-splitter-plate geometry. The conditional flow field is captured using linear and quadratic stochastic estimation based on the occurrence of positive and negative pressure events in the vicinity of the mean reattachment location. The results shed light on the dominant flow structures associated with significant wall-pressure generation. Furthermore, analysis based on the individual terms in the stochastic estimation expansion shows that both the linear and non-linear flow sources of the coherent (conditional) velocity field are equally important contributors to the generation of the conditional surface pressure.


Author(s):  
Pengyin Liu ◽  
Jinge Chen ◽  
Shen Xin ◽  
Xiaocheng Zhu ◽  
Zhaohui Du

In this paper, a slotted tip structure is experimentally analyzed. A wind turbine with three blades, of which the radius is 301.74mm, is investigated by the PIV method. Each wind turbine blade is formed with a slots system comprising four internal tube members embedded in the blade. The inlets of the internal tube member are located at the leading edge of the blade and form an inlet array. The outlets are located at the blade tip face and form an outlet array. The near wake flow field of the wind turbine with slotted tip and without slotted tip are both measured. Velocity field of near wake region and clear images of the tip vortex are captured under different wake ages. The experimental results show that the radius of the tip vortex core is enlarged by the slotted tip at any wake age compared with that of original wind turbine. Moreover, the diffusion process of the tip vortex is accelerated by the slotted tip which lead to the disappearance of the tip vortex occurs at smaller wake age. The strength of the tip vortex is also reduced indicating that the flow field in the near wake of wind turbine is improved. The experimental data are further analyzed with the vortex core model to reveal the flow mechanism of this kind of flow control method. The turbulence coefficient of the vortex core model for wind turbine is obtained from the experimental data of the wind turbine with and without slotted tip. It shows that the slotted tip increases the turbulence strength in the tip vortex core by importing airflow into the tip vortex core during its initial generation stage, which leads to the reduction of the tip vortex strength. Therefore, it is promising that the slotted tip can be used to weaken the vorticity and accelerate the diffusion of the tip vortex which would improve the problem caused by the tip vortex.


Sign in / Sign up

Export Citation Format

Share Document