scholarly journals AN IMPROVED POWER SUPPLY SYSTEM FOR NEUTRAL SECTIONS IN RAILWAY ELECTRIC POWER SYSTEMS

Author(s):  
IN KWON PARK ◽  
BYOUNG-GON LEE ◽  
JU-RAK KIM ◽  
JANG-MU LEE
2021 ◽  
Author(s):  
Sergey Goremykin

The textbook describes the main issues of the theory of relay protection and automation of electric power systems. The structure and functional purpose of protection devices and automation of power transmission lines of various configurations, synchronous generators, power transformers, electric motors and individual electrical installations are considered. For each of the types of protection of the above objects, the structure, the principle of operation, the order of selection of settings are given, the advantages and disadvantages are evaluated, indicating the scope of application. The manual includes material on complete devices based on semiconductor and microprocessor element bases. The progressive use of such devices (protection of the third and fourth generations) is appropriate and effective due to their significant advantages. Meets the requirements of the federal state educational standards of higher education of the latest generation. It is intended for students in the areas of training 13.03.02 "Electric power and electrical engineering" (profile "Power supply", discipline "Relay protection and automation of electric power systems") and 35.03.06 "Agroengineering" (profile "Power supply and electrical equipment of agricultural enterprises", discipline "Relay protection of electrical equipment of agricultural objects"), as well as for graduate students and specialists engaged in the field of electrification and automation of industrial and agrotechnical objects.


2020 ◽  
Vol 23 (2) ◽  
pp. 16-19
Author(s):  
G. SHEINA ◽  

This paper investigates a mathematical model of one elements of the power supply system - power transmission lines. The type of models depends on the initial simplifications, which in turn are determined by the complexity of the physics of processes. The task of improving the accuracy of modeling of emergency processes in the power system is due to the significant complexity of modern power systems and their equipment, high-speed relay protection, automation of emergency management and the introduction of higher-speed switching equipment. One of the reasons for a significant number of serious emergencies in the system is the lack of complete and reliable information for modeling modes in the design and operation of power systems. The development of a mathematical model of a three-phase power line, which provides adequate reflection of both normal and emergency processes, is relevant. The advanced mathematical model of power transmission lines allows to investigate various operational modes of electric networks. The improved mathematical model of the power transmission line reflects all the features of physical processes at state modes and transient process and provides sufficient accuracy of the results. The type of mathematical model of power transmission lines depends on the accepted simplifications, depending on the task of research. The purpose of this work is to analyze the mathematical model of the power transmission line to study the modes of operation of the power supply system, with the possibility of its application to take into account all the design features of overhead and cable power lines. The mathematical model of the power line for the study of the modes of operation of the power supply system is analyzed. It is used to take into account the design features of overhead and cable power lines, skin effect.


2018 ◽  
Vol 239 ◽  
pp. 01010 ◽  
Author(s):  
Evgeny Tretyakov

The relevance of the work is determined by the need to improve the electrical distribution grids of railways on the basis of digital technologies. The article presents advanced methods of transportation and distribution of electric power in smart power grids of railways based on multi-agent control. The analysis of the power supply system for stationary railroad consumers was performed and advanced ways of their development were defined. These methods should provide increased speed, adaptive determination of restrictions on using electric power equipment, management of mode parameters, sectioning and power flow modes in electrical distribution grids, restoration of power supply after emergency events. The method of adaptive control of transportation and distribution of electric energy in the power supply system of stationary railway consumers is developed based on the hierarchical structure of IEC 61850. This method takes into account the coordination of managing and local controllers in the data exchange environment, the control results and the variable area of responsibility of controllers and their division according to their functional purpose based on the multi-agent approach. The method of power flow control was developed to reduce power losses, increase the capacity of transport channels and ensure the restoration of the normal mode of the electric network by reconfiguring it and controlling active elements based on graph theory. The method takes into account the expected daily load curve, limits on the demand for capacity by active consumers and the possibility of a closed mode of electrical network operation through controlled cross-sections. The simulation results presented on the test circuit have showed the feasibility and efficiency of the proposed approaches.


2016 ◽  
Vol 35 (4) ◽  
pp. 1177-1189 ◽  
Author(s):  
Mohammad Amin Mahmoudi ◽  
Mehdi Kharazmi ◽  
Masoud Rashidinejad ◽  
Masoud Iranmanesh ◽  
Peyman Aghaie

Sign in / Sign up

Export Citation Format

Share Document