scholarly journals Assessing Climate Change Linkages related to Water Quality Trading Effectiveness for Incorporating Ancillary Benefits

Author(s):  
Juhn-Yuan Su ◽  
Ramesh Goel ◽  
Steven J. Burian ◽  
Michael E. Barber
Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1738
Author(s):  
Juhn-Yuan Su ◽  
Ramesh Goel ◽  
Steven Burian ◽  
Sarah J. Hinners ◽  
Adam Kochanski ◽  
...  

Climate change and population growth serve as fundamental problems in assessing potential impacts on future surface water quality. In addition to uncertainties in climate depicted in various representative concentration pathway (RCP) scenarios, futuristic population growth mimicking historical conditions is subject to uncertainties related to changing development patterns. The combination of climate change and population characteristics exacerbates concerns regarding the future water quality performance of river systems. Previous studies have established linkages among future climate, population impacts and watershed water quality performance. However, these linkages have not been specifically incorporated into water quality trading programs. Rather than temporally-variant adjustment factors, WQT programs use constant margins of safety for pollutant reduction credits resulting in trade ratios that do not explicitly account for futuristic climate and population uncertainties. Hence, this study proposes a conceptual framework for water quality trading establishing adjustment factors as margins of safety on trade ratios for pollutant reduction credits examining climate and population characteristics separately followed by evaluating them combined. This new framework is demonstrated using a programming script that calculates the margins of safety based on simulation results conducted through a water quality model of the Jordan River in Salt Lake City, UT, USA over a 3-year timeframe. With margins of safety over magnitudes of ±2 over the Jordan River simulations, this research introduces the framework as a foundation for developing adjustment factors for addressing climatic and population characteristics upon river systems.


2020 ◽  
Vol 96 (4) ◽  
pp. 552-572
Author(s):  
Patrick M. Fleming ◽  
Erik Lichtenberg ◽  
David A. Newburn

2019 ◽  
Author(s):  
Patrick Fleming ◽  
Erik Lichtenberg ◽  
David Allen Newburn

1998 ◽  
Vol 37 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Hany Hassan ◽  
Keisuke Hanaki ◽  
Tomonori Matsuo

Global climate change induced by increased concentrations of greenhouse gases (especially CO2) is expected to include changes in precipitation, wind speed, incoming solar radiation, and air temperature. These major climate variables directly influence water quality in lakes by altering changes in flow and water temperature balance. High concentration of nutrient enrichment and expected variability of climate can lead to periodic phytoplankton blooms and an alteration of the neutral trophic balance. As a result, dissolved oxygen levels, with low concentrations, can fluctuate widely and algal productivity may reach critical levels. In this work, we will present: 1) recent results of GCMs climate scenarios downscaling project that was held at the University of Derby, UK.; 2) current/future comparative results of a new mathematical lake eutrophication model (LEM) in which output of phytoplankton growth rate and dissolved oxygen will be presented for Suwa lake in Japan as a case study. The model parameters were calibrated for the period of 1973–1983 and validated for the period of 1983–1993. Meterologic, hydrologic, and lake water quality data of 1990 were selected for the assessment analysis. Statistical relationships between seven daily meteorological time series and three airflow indices were used as a means for downscaling daily outputs of Hadley Centre Climate Model (HadCM2SUL) to the station sub-grid scale.


2018 ◽  
Author(s):  
Carmen Longo ◽  
◽  
Elizabeth Balgord ◽  
Timothy F. Diedesch ◽  
John All

Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 98
Author(s):  
Leigh A. Provost ◽  
Robert Weaver ◽  
Nezamoddin N. Kachouie

The changing climate affects the agricultural lands, and, in turn, the changes in agricultural lands alter the watershed. A major concern regarding waterbodies is the increased sedimentation rates due to climate change. To improve the water quality, it is crucial to remove fine sediments. Using current environmental dredging methods is challenging because of the sediment volumes that must be dredged, the absence of nearby disposal sites, and the shoreline infrastructure at the dredging locations. To address these issues, we used a surgical dredging method with a variable area suction head that can easily maneuver around the docks, pilings, and other infrastructures. It can also isolate the fine grain material to better manage the dredged volumes in the seabed where nutrients are typically adhered. To this end, a statistical analysis of the dredged samples is essential to improve the design efficiency. In this work, we collected several samples using a variable area suction head with different design settings. The collected samples using each design setting were then used to model the distributions of the different grain sizes in the dredged sediments. The proposed statistical model can be effectively used for the prediction of sediment sampling outcomes to improve the gradation of the fine sediments.


Sign in / Sign up

Export Citation Format

Share Document