scholarly journals Flood risk assessment and management in Slovakia

Author(s):  
M. Zeleňáková
2015 ◽  
Vol 51 (8) ◽  
pp. 6399-6416 ◽  
Author(s):  
B. Merz ◽  
S. Vorogushyn ◽  
U. Lall ◽  
A. Viglione ◽  
G. Blöschl

2014 ◽  
Vol 14 (7) ◽  
pp. 1921-1942 ◽  
Author(s):  
B. Merz ◽  
J. Aerts ◽  
K. Arnbjerg-Nielsen ◽  
M. Baldi ◽  
A. Becker ◽  
...  

Abstract. Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of local, catchment-specific characteristics, such as meteorology, topography and geology. These traditional views have been beneficial, but they have a narrow framing. In this paper we contrast traditional views with broader perspectives that are emerging from an improved understanding of the climatic context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical approaches in flood estimation need to be complemented by the search for the causal mechanisms and dominant processes in the atmosphere, catchment and river system that leave their fingerprints on flood characteristics. (3) Natural climate variability leads to time-varying flood characteristics, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand the interactions between society and floods. (5) Given the global scale and societal importance, we call for the organization of an international multidisciplinary collaboration and data-sharing initiative to further understand the links between climate and flooding and to advance flood research.


2020 ◽  
Vol 20 (4) ◽  
pp. 1045-1048
Author(s):  
Cristina Prieto ◽  
Dhruvesh Patel ◽  
Dawei Han

Abstract. Floods are among Earth's most common and most destructive natural hazards, affecting human lives and properties directly and indirectly around the world. The frequency and magnitude of extreme flooding have been increasing in many parts of the world in recent decades (see, e.g. Berghuijs et al., 2017; Blöschl et al., 2019a; Marijnissen et al., 2019), hampering human well-being and economic growth in both developed and developing countries. Flood risk management carries out the flood risk assessment and uses appropriate resources (human, finance, science and technology, and nature) to control the flood risk (Han, 2011), which is an urgent challenge for the scientific and engineering communities to address. In a similar way to “Twenty-three unsolved problems in hydrology” (Blöschl et al., 2019b), despite decades of research in this field, there are still many unsolved problems in floods as well. This special issue “Flood Risk Assessment and Management” is an outcome of the session “Flood Risk Assessment and Management” in the Naturals Hazards Division at the European Geosciences Union (EGU) General Assembly held in Vienna, Austria. The session series has been organized annually at EGU since 2018. This special issue presents a wide range of in-depth research studies based on flood modelling (including hydrological modelling and hydrodynamic modelling), hazard mapping, flood damage and risk assessment as well as studies that focus on flood relief prioritization, mitigation strategies and flood policies. Extraordinary floods and debris flows are also included due to dam and dike breaks and extreme storms over gullies in mountain areas. The nine articles in this special issue are broadly introduced in the following three categories.


Sign in / Sign up

Export Citation Format

Share Document