scholarly journals Self-Training Classification Framework with Spatial-Contextual Information for Local Climate Zones

2019 ◽  
Vol 11 (23) ◽  
pp. 2828
Author(s):  
Zhao ◽  
Ma ◽  
Zhong ◽  
Zhao ◽  
Cao

Local climate zones (LCZ) have become a generic criterion for climate analysis among global cities, as they can describe not only the urban climate but also the morphology inside the city. LCZ mapping based on the remote sensing classification method is a fundamental task, and the protocol proposed by the World Urban Database and Access Portal Tools (WUDAPT) project, which consists of random forest classification and filter-based spatial smoothing, is the most common approach. However, the classification and spatial smoothing lack a unified framework, which causes the appearance of small, isolated areas in the LCZ maps. In this paper, a spatial-contextual information-based self-training classification framework (SCSF) is proposed to solve this LCZ classification problem. In SCSF, conditional random field (CRF) is used to integrate the classification and spatial smoothing processing into one model and a self-training method is adopted, considering that the lack of sufficient expert-labeled training samples is always a big issue, especially for the complex LCZ scheme. Moreover, in the unary potentials of CRF modeling, pseudo-label selection using a self-training process is used to train the classifier, which fuses the regional spatial information through segmentation and the local neighborhood information through moving windows to provide a more reliable probabilistic classification map. In the pairwise potential function, SCSF can effectively improve the classification accuracy by integrating the spatial-contextual information through CRF. The experimental results prove that the proposed framework is efficient when compared to the traditional mapping product of WUDAPT in LCZ classification.

2021 ◽  
Vol 13 (11) ◽  
pp. 6374
Author(s):  
Yang Lu ◽  
Jiansi Yang ◽  
Song Ma

Local climate zones (LCZs) emphasize the influence of representative geometric properties and surface cover characteristics on the local climate. In this paper, we propose a multi-temporal LCZ mapping method, which was used to obtain LCZ maps for 2005 and 2015 in the Guangdong–Hong Kong–Macao Greater Bay Area (GBA), and we analyze the effects of LCZ changes in the GBA on land surface temperature (LST) changes. The results reveal that: (1) The accuracy of the LCZ mapping of the GBA for 2005 and 2015 is 85.03% and 85.28%, respectively. (2) The built type category showing the largest increase in area from 2005 to 2015 is LCZ8 (large low-rise), with a 1.01% increase. The changes of the LCZs also vary among the cities due to the different factors, such as the economic development level and local policies. (3) The area showing a warming trend is larger than the area showing a cooling trend in all the cities in the GBA study area. The main reasons for the warming are the increase of built types, the enhancement of human activities, and the heat radiation from surrounding high-temperature areas. (4) The spatial morphology changes of the built type categories are positively correlated with the LST changes, and the morphological changes of the LCZ4 (open high-rise) and LCZ5 (open midrise) built types exert the most significant influence. These findings will provide important insights for urban heat mitigation via rational landscape design in urban planning management.


2021 ◽  
pp. 103174
Author(s):  
Yi ZHOU ◽  
Guoliang ZHANG ◽  
Li JIANG ◽  
Xin CHEN ◽  
Tianqi XIE ◽  
...  

Author(s):  
Chunhong Zhao

The Local Climate Zones (LCZs) concept was initiated in 2012 to improve the documentation of Urban Heat Island (UHI) observations. Despite the indispensable role and initial aim of LCZs concept in metadata reporting for atmospheric UHI research, its role in surface UHI investigation also needs to be emphasized. This study incorporated LCZs concept to study surface UHI effect for San Antonio, Texas. LCZ map was developed by a GIS-based LCZs classification scheme with the aid of airborne Lidar dataset and other freely available GIS data. Then, the summer LST was calculated based Landsat imagery, which was used to analyse the relations between LST and LCZs and the statistical significance of the differences of LST among the typical LCZs, in order to test if LCZs are able to efficiently facilitate SUHI investigation. The linkage of LCZs and land surface temperature (LST) indicated that the LCZs mapping can be used to compare and investigate the SUHI. Most of the pairs of LCZs illustrated significant differences in average LSTs with considerable significance. The intra-urban temperature comparison among different urban classes contributes to investigate the influence of heterogeneous urban morphology on local climate formation.


2016 ◽  
Vol 24 (3) ◽  
pp. 2-12 ◽  
Author(s):  
Jan Geletič ◽  
Michal Lehnert

Abstract Stewart and Oke (2012) recently proposed the concept of Local Climate Zones (LCZ) to describe the siting of urban meteorological stations and to improve the presentation of results amongst researchers. There is now a concerted effort, however, within the field of urban climate studies to map the LCZs across entire cities, providing a means to compare the internal structure of urban areas in a standardised way and to enable the comparison of cities. We designed a new GIS-based LCZ mapping method for Central European cities and compiled LCZ maps for three selected medium-sized Central European cities: Brno, Hradec Králové, and Olomouc (Czech Republic). The method is based on measurable physical properties and a clearly defined decision-making algorithm. Our analysis shows that the decision-making algorithm for defining the percentage coverage for individual LCZs showed good agreement (in 79–89% of cases) with areas defined on the basis of expert knowledge. When the distribution of LCZs on the basis of our method and the method of Bechtel and Daneke (2012) was compared, the results were broadly similar; however, considerable differences occurred for LCZs 3, 5, 10, D, and E. It seems that Central European cities show a typical spatial pattern of LCZ distribution but that rural settlements in the region also regularly form areas of built-type LCZ classes. The delineation and description of the spatial distribution of LCZs is an important step towards the study of urban climates in a regional setting.


Sign in / Sign up

Export Citation Format

Share Document