scholarly journals Better and Faster: Knowledge Transfer from Multiple Self-supervised Learning Tasks via Graph Distillation for Video Classification

Author(s):  
Chenrui Zhang ◽  
Yuxin Peng

Video representation learning is a vital problem for classification task. Recently, a promising unsupervised paradigm termed self-supervised learning has emerged, which explores inherent supervisory signals implied in massive data for feature learning via solving auxiliary tasks. However, existing methods in this regard suffer from two limitations when extended to video classification. First, they focus only on a single task, whereas ignoring complementarity among different task-specific features and thus resulting in suboptimal video representation. Second, high computational and memory cost hinders their application in real-world scenarios. In this paper, we propose a graph-based distillation framework to address these problems: (1) We propose logits graph and representation graph to transfer knowledge from multiple self-supervised tasks, where the former distills classifier-level knowledge by solving a multi-distribution joint matching problem, and the latter distills internal feature knowledge from pairwise ensembled representations with tackling the challenge of heterogeneity among different features; (2) The proposal that adopts a teacher-student framework can reduce the redundancy of knowledge learned from teachers dramatically, leading to a lighter student model that solves classification task more efficiently. Experimental results on 3 video datasets validate that our proposal not only helps learn better video representation but also compress model for faster inference.

2020 ◽  
Author(s):  
Xiaoqi Wang ◽  
Yaning Yang ◽  
Xiangke Liao ◽  
Lenli Li ◽  
Fei Li ◽  
...  

AbstractPredicting potential links in heterogeneous biomedical networks (HBNs) can greatly benefit various important biomedical problem. However, the self-supervised representation learning for link prediction in HBNs has been slightly explored in previous researches. Therefore, this study proposes a two-level self-supervised representation learning, namely selfRL, for link prediction in heterogeneous biomedical networks. The meta path detection-based self-supervised learning task is proposed to learn representation vectors that can capture the global-level structure and semantic feature in HBNs. The vertex entity mask-based self-supervised learning mechanism is designed to enhance local association of vertices. Finally, the representations from two tasks are concatenated to generate high-quality representation vectors. The results of link prediction on six datasets show selfRL outperforms 25 state-of-the-art methods. In particular, selfRL reveals great performance with results close to 1 in terms of AUC and AUPR on the NeoDTI-net dataset. In addition, the PubMed publications demonstrate that nine out of ten drugs screened by selfRL can inhibit the cytokine storm in COVID-19 patients. In summary, selfRL provides a general frame-work that develops self-supervised learning tasks with unlabeled data to obtain promising representations for improving link prediction.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 132937-132949
Author(s):  
Behzad Ghazanfari ◽  
Fatemeh Afghah ◽  
Mohammadtaghi Hajiaghayi

Author(s):  
Renato Augusto De Souza ◽  
Raquel Pereira De Almeida ◽  
Arghir-Nicolae Moldovan ◽  
Zenilton Kleber G. Do Patrocinio ◽  
Silvio Jamil F. Guimaraes

Author(s):  
Zhipeng Wang ◽  
Chunping Hou ◽  
Guanghui Yue ◽  
Qingyuan Yang

Author(s):  
Sebastijan Dumancic ◽  
Hendrik Blockeel

The goal of unsupervised representation learning is to extract a new representation of data, such that solving many different tasks becomes easier. Existing methods typically focus on vectorized data and offer little support for relational data, which additionally describes relationships among instances. In this work we introduce an approach for relational unsupervised representation learning. Viewing a relational dataset as a hypergraph, new features are obtained by clustering vertices and hyperedges. To find a representation suited for many relational learning tasks, a wide range of similarities between relational objects is considered, e.g. feature and structural similarities. We experimentally evaluate the proposed approach and show that models learned on such latent representations perform better, have lower complexity, and outperform the existing approaches on classification tasks.


2020 ◽  
Vol 34 (05) ◽  
pp. 9217-9224
Author(s):  
Tianyi Wang ◽  
Yating Zhang ◽  
Xiaozhong Liu ◽  
Changlong Sun ◽  
Qiong Zhang

Multi-role dialogue understanding comprises a wide range of diverse tasks such as question answering, act classification, dialogue summarization etc. While dialogue corpora are abundantly available, labeled data, for specific learning tasks, can be highly scarce and expensive. In this work, we investigate dialogue context representation learning with various types unsupervised pretraining tasks where the training objectives are given naturally according to the nature of the utterance and the structure of the multi-role conversation. Meanwhile, in order to locate essential information for dialogue summarization/extraction, the pretraining process enables external knowledge integration. The proposed fine-tuned pretraining mechanism is comprehensively evaluated via three different dialogue datasets along with a number of downstream dialogue-mining tasks. Result shows that the proposed pretraining mechanism significantly contributes to all the downstream tasks without discrimination to different encoders.


Sign in / Sign up

Export Citation Format

Share Document