scholarly journals Understanding the Success of Graph-based Semi-Supervised Learning using Partially Labelled Stochastic Block Model

Author(s):  
Avirup Saha ◽  
Shreyas Sheshadri ◽  
Samik Datta ◽  
Niloy Ganguly ◽  
Disha Makhija ◽  
...  

With the proliferation of learning scenarios with an abundance of instances, but limited amount of high-quality labels, semi-supervised learning algorithms came to prominence. Graph-based semi-supervised learning (G-SSL) algorithms, of which Label Propagation (LP) is a prominent example, are particularly well-suited for these problems. The premise of LP is the existence of homophily in the graph, but beyond that nothing is known about the efficacy of LP. In particular, there is no characterisation that connects the structural constraints, volume and quality of the labels to the accuracy of LP. In this work, we draw upon the notion of recovery from the literature on community detection, and provide guarantees on accuracy for partially-labelled graphs generated from the Partially-Labelled Stochastic Block Model (PLSBM). Extensive experiments performed on synthetic data verify the theoretical findings.

2014 ◽  
Vol 24 (11) ◽  
pp. 2699-2709 ◽  
Author(s):  
Bian-Fang CHAI ◽  
Jian YU ◽  
Cai-Yan JIA ◽  
Jing-Hong WANG

Author(s):  
Raul E. Avelar ◽  
Karen Dixon ◽  
Boniphace Kutela ◽  
Sam Klump ◽  
Beth Wemple ◽  
...  

The calibration of safety performance functions (SPFs) is a mechanism included in the Highway Safety Manual (HSM) to adjust SPFs in the HSM for use in intended jurisdictions. Critically, the quality of the calibration procedure must be assessed before using the calibrated SPFs. Multiple resources to aid practitioners in calibrating SPFs have been developed in the years following the publication of the HSM 1st edition. Similarly, the literature suggests multiple ways to assess the goodness-of-fit (GOF) of a calibrated SPF to a data set from a given jurisdiction. This paper uses the calibration results of multiple intersection SPFs to a large Mississippi safety database to examine the relations between multiple GOF metrics. The goal is to develop a sensible single index that leverages the joint information from multiple GOF metrics to assess overall quality of calibration. A factor analysis applied to the calibration results revealed three underlying factors explaining 76% of the variability in the data. From these results, the authors developed an index and performed a sensitivity analysis. The key metrics were found to be, in descending order: the deviation of the cumulative residual (CURE) plot from the 95% confidence area, the mean absolute deviation, the modified R-squared, and the value of the calibration factor. This paper also presents comparisons between the index and alternative scoring strategies, as well as an effort to verify the results using synthetic data. The developed index is recommended to comprehensively assess the quality of the calibrated intersection SPFs.


Author(s):  
Leandro Skowronski ◽  
Paula Martin de Moraes ◽  
Mario Luiz Teixeira de Moraes ◽  
Wesley Nunes Gonçalves ◽  
Michel Constantino ◽  
...  

2021 ◽  
Vol 15 (4) ◽  
pp. 1-20
Author(s):  
Georg Steinbuss ◽  
Klemens Böhm

Benchmarking unsupervised outlier detection is difficult. Outliers are rare, and existing benchmark data contains outliers with various and unknown characteristics. Fully synthetic data usually consists of outliers and regular instances with clear characteristics and thus allows for a more meaningful evaluation of detection methods in principle. Nonetheless, there have only been few attempts to include synthetic data in benchmarks for outlier detection. This might be due to the imprecise notion of outliers or to the difficulty to arrive at a good coverage of different domains with synthetic data. In this work, we propose a generic process for the generation of datasets for such benchmarking. The core idea is to reconstruct regular instances from existing real-world benchmark data while generating outliers so that they exhibit insightful characteristics. We propose and describe a generic process for the benchmarking of unsupervised outlier detection, as sketched so far. We then describe three instantiations of this generic process that generate outliers with specific characteristics, like local outliers. To validate our process, we perform a benchmark with state-of-the-art detection methods and carry out experiments to study the quality of data reconstructed in this way. Next to showcasing the workflow, this confirms the usefulness of our proposed process. In particular, our process yields regular instances close to the ones from real data. Summing up, we propose and validate a new and practical process for the benchmarking of unsupervised outlier detection.


Sign in / Sign up

Export Citation Format

Share Document