scholarly journals Predicting Traffic Congestion Evolution: A Deep Meta Learning Approach

Author(s):  
Yidan Sun ◽  
Guiyuan Jiang ◽  
Siew Kei Lam ◽  
Peilan He

Many efforts are devoted to predicting congestion evolution using propagation patterns that are mined from historical traffic data. However, the prediction quality is limited to the intrinsic properties that are present in the mined patterns. In addition, these mined patterns frequently fail to sufficiently capture many realistic characteristics of true congestion evolution (e.g., asymmetric transitivity, local proximity). In this paper, we propose a representation learning framework to characterize and predict congestion evolution between any pair of road segments (connected via single or multiple paths). Specifically, we build dynamic attributed networks (DAN) to incorporate both dynamic and static impact factors while preserving dynamic topological structures. We propose a Deep Meta Learning Model (DMLM) for learning representations of road segments which support accurate prediction of congestion evolution. DMLM relies on matrix factorization techniques and meta-LSTM modules to exploit temporal correlations at multiple scales, and employ meta-Attention modules to merge heterogeneous features while learning the time-varying impacts of both dynamic and static features. Compared to all state-of-the-art methods, our framework achieves significantly better prediction performance on two congestion evolution behaviors (propagation and decay) when evaluated using real-world dataset.

2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


2021 ◽  
pp. 1-1
Author(s):  
Qi Liu ◽  
Xinyu Zhang ◽  
Yongxiang Liu ◽  
Kai Huo ◽  
Weidong Jiang ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Jianwei Zhang ◽  
Xubin Zhang ◽  
Lei Lv ◽  
Yining Di ◽  
Wei Chen

Background: Learning discriminative representation from large-scale data sets has made a breakthrough in decades. However, it is still a thorny problem to generate representative embedding from limited examples, for example, a class containing only one image. Recently, deep learning-based Few-Shot Learning (FSL) has been proposed. It tackles this problem by leveraging prior knowledge in various ways. Objective: In this work, we review recent advances of FSL from the perspective of high-dimensional representation learning. The results of the analysis can provide insights and directions for future work. Methods: We first present the definition of general FSL. Then we propose a general framework for the FSL problem and give the taxonomy under the framework. We survey two FSL directions: learning policy and meta-learning. Results: We review the advanced applications of FSL, including image classification, object detection, image segmentation and other tasks etc., as well as the corresponding benchmarks to provide an overview of recent progress. Conclusion: FSL needs to be further studied in medical images, language models, and reinforcement learning in future work. In addition, cross-domain FSL, successive FSL, and associated FSL are more challenging and valuable research directions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Samar Ali Shilbayeh ◽  
Sunil Vadera

Purpose This paper aims to describe the use of a meta-learning framework for recommending cost-sensitive classification methods with the aim of answering an important question that arises in machine learning, namely, “Among all the available classification algorithms, and in considering a specific type of data and cost, which is the best algorithm for my problem?” Design/methodology/approach This paper describes the use of a meta-learning framework for recommending cost-sensitive classification methods for the aim of answering an important question that arises in machine learning, namely, “Among all the available classification algorithms, and in considering a specific type of data and cost, which is the best algorithm for my problem?” The framework is based on the idea of applying machine learning techniques to discover knowledge about the performance of different machine learning algorithms. It includes components that repeatedly apply different classification methods on data sets and measures their performance. The characteristics of the data sets, combined with the algorithms and the performance provide the training examples. A decision tree algorithm is applied to the training examples to induce the knowledge, which can then be used to recommend algorithms for new data sets. The paper makes a contribution to both meta-learning and cost-sensitive machine learning approaches. Those both fields are not new, however, building a recommender that recommends the optimal case-sensitive approach for a given data problem is the contribution. The proposed solution is implemented in WEKA and evaluated by applying it on different data sets and comparing the results with existing studies available in the literature. The results show that a developed meta-learning solution produces better results than METAL, a well-known meta-learning system. The developed solution takes the misclassification cost into consideration during the learning process, which is not available in the compared project. Findings The proposed solution is implemented in WEKA and evaluated by applying it to different data sets and comparing the results with existing studies available in the literature. The results show that a developed meta-learning solution produces better results than METAL, a well-known meta-learning system. Originality/value The paper presents a major piece of new information in writing for the first time. Meta-learning work has been done before but this paper presents a new meta-learning framework that is costs sensitive.


Author(s):  
Yi Li ◽  
Weifeng Li ◽  
Qing Yu ◽  
Han Yang

Urban traffic congestion is one of the urban diseases that needs to be solved urgently. Research has already found that a few road segments can significantly influence the overall operation of the road network. Traditional congestion mitigation strategies mainly focus on the topological structure and the transport performance of each single key road segment. However, the propagation characteristics of congestion indicate that the interaction between road segments and the correlation between travel speed and traffic volume should also be considered. The definition is proposed for “key road cluster” as a group of road segments with strong correlation and spatial compactness. A methodology is proposed to identify key road clusters in the network and understand the operating characteristics of key road clusters. Considering the correlation between travel speed and traffic volume, a unidirectional-weighted correlation network is constructed. The community detection algorithm is applied to partition road segments into key road clusters. Three indexes are used to evaluate and describe the characteristic of these road clusters, including sensitivity, importance, and IS. A case study is carried out using taxi GPS data of Shanghai, China, from May 1 to 17, 2019. A total of 44 key road clusters are identified in the road network. According to their spatial distribution patterns, these key road clusters can be classified into three types—along with network skeletons, around transportation hubs, and near bridges. The methodology unveils the mechanism of congestion formation and propagation, which can offer significant support for traffic management.


Sign in / Sign up

Export Citation Format

Share Document