Semi-Stable Semantics for Abstract Dialectical Frameworks

2021 ◽  
Author(s):  
Atefeh Keshavarzi Zafarghandi ◽  
Rineke Verbrugge ◽  
Bart Verheij

Abstract dialectical frameworks (ADFs) have been introduced as a formalism for modeling and evaluating argumentation allowing general logical satisfaction conditions. Different criteria that have been used to settle the acceptance of arguments are called semantics. However, the notion of semi-stable semantics as studied for abstract argumentation frameworks has received little attention for ADFs. In the current work, we present the concepts of semi-two-valued models and semi-stable models for ADFs. We show that these two notions satisfy a set of plausible properties required for semi-stable semantics of ADFs. Moreover, we show that semi-two-valued and semi-stable semantics of ADFs form a proper generalization of the semi-stable semantics of AFs, just like two-valued model and stable semantics for ADFs are generalizations of stable semantics for AFs.

2021 ◽  
pp. 1-41
Author(s):  
Atefeh Keshavarzi Zafarghandi ◽  
Rineke Verbrugge ◽  
Bart Verheij

Abstract dialectical frameworks (ADFs) have been introduced as a formalism for modeling argumentation allowing general logical satisfaction conditions and the relevant argument evaluation. Different criteria used to settle the acceptance of arguments are called semantics. Semantics of ADFs have so far mainly been defined based on the concept of admissibility. However, the notion of strongly admissible semantics studied for abstract argumentation frameworks has not yet been introduced for ADFs. In the current work we present the concept of strong admissibility of interpretations for ADFs. Further, we show that strongly admissible interpretations of ADFs form a lattice with the grounded interpretation as the maximal element. We also present algorithms to answer the following decision problems: (1) whether a given interpretation is a strongly admissible interpretation of a given ADF, and (2) whether a given argument is strongly acceptable/deniable in a given interpretation of a given ADF. In addition, we show that the strongly admissible semantics of ADFs forms a proper generalization of the strongly admissible semantics of AFs.


Author(s):  
Nico Potyka

Bipolar abstract argumentation frameworks allow modeling decision problems by defining pro and contra arguments and their relationships. In some popular bipolar frameworks, there is an inherent tendency to favor either attack or support relationships. However, for some applications, it seems sensible to treat attack and support equally. Roughly speaking, turning an attack edge into a support edge, should just invert its meaning. We look at a recently introduced bipolar argumentation semantics and two novel alternatives and discuss their semantical and computational properties. Interestingly, the two novel semantics correspond to stable semantics if no support relations are present and maintain the computational complexity of stable semantics in general bipolar frameworks.


2007 ◽  
Vol 7 (3) ◽  
pp. 301-353 ◽  
Author(s):  
NIKOLAY PELOV ◽  
MARC DENECKER ◽  
MAURICE BRUYNOOGHE

AbstractIn this paper, we present a framework for the semantics and the computation of aggregates in the context of logic programming. In our study, an aggregate can be an arbitrary interpreted second order predicate or function. We define extensions of the Kripke-Kleene, the well-founded and the stable semantics for aggregate programs. The semantics is based on the concept of a three-valuedimmediate consequence operatorof an aggregate program. Such an operatorapproximatesthe standard two-valued immediate consequence operator of the program, and induces a unique Kripke-Kleene model, a unique well-founded model and a collection of stable models. We study different ways of defining such operators and thus obtain a framework of semantics, offering different trade-offs betweenprecisionandtractability. In particular, we investigate conditions on the operator that guarantee that the computation of the three types of semantics remains on the same level as for logic programs without aggregates. Other results show that, in practice, even efficient three-valued immediate consequence operators which are very low in the precision hierarchy, still provide optimal precision.


Author(s):  
Gianvincenzo Alfano ◽  
Sergio Greco ◽  
Francesco Parisi ◽  
Irina Trubitsyna

Extensions of Dung’s Argumentation Framework (AF) include the class of Recursive Bipolar AFs (Rec-BAFs), i.e. AFs with recursive attacks and supports. We show that a Rec-BAF \Delta can be translated into a logic program P_\Delta so that the extensions of \Delta under different semantics coincide with subsets of the partial stable models of P_\Delta.


2019 ◽  
Vol 19 (5-6) ◽  
pp. 941-956
Author(s):  
JOÃO ALCÂNTARA ◽  
SAMY SÁ ◽  
JUAN ACOSTA-GUADARRAMA

AbstractAbstract Dialectical Frameworks (ADFs) are argumentation frameworks where each node is associated with an acceptance condition. This allows us to model different types of dependencies as supports and attacks. Previous studies provided a translation from Normal Logic Programs (NLPs) to ADFs and proved the stable models semantics for a normal logic program has an equivalent semantics to that of the corresponding ADF. However, these studies failed in identifying a semantics for ADFs equivalent to a three-valued semantics (as partial stable models and well-founded models) for NLPs. In this work, we focus on a fragment of ADFs, called Attacking Dialectical Frameworks (ADF+s), and provide a translation from NLPs to ADF+s robust enough to guarantee the equivalence between partial stable models, well-founded models, regular models, stable models semantics for NLPs and respectively complete models, grounded models, preferred models, stable models for ADFs. In addition, we define a new semantics for ADF+s, called L-stable, and show it is equivalent to the L-stable semantics for NLPs.


2011 ◽  
Vol 26 (4) ◽  
pp. 365-410 ◽  
Author(s):  
Pietro Baroni ◽  
Martin Caminada ◽  
Massimiliano Giacomin

AbstractThis paper presents an overview on the state of the art of semantics for abstract argumentation, covering both some of the most influential literature proposals and some general issues concerning semantics definition and evaluation. As to the former point, the paper reviews Dung's original notions of complete, grounded, preferred, and stable semantics, as well as subsequently proposed notions like semi-stable, ideal, stage, and CF2 semantics, considering both the extension-based and the labelling-based approaches with respect to their definitions. As to the latter point, the paper presents an extensive set of general properties for semantics evaluation and analyzes the notions of argument justification and skepticism. The final part of the paper is focused on the discussion of some relationships between semantics properties and domain-specific requirements.


2020 ◽  
Vol 20 (5) ◽  
pp. 703-718
Author(s):  
Gianvincenzo Alfano ◽  
Sergio Greco ◽  
Francesco Parisi ◽  
Irina Trubitsyna

AbstractRecently there has been an increasing interest in frameworks extending Dung’s abstract Argumentation Framework (AF). Popular extensions include bipolar AFs and AFs with recursive attacks and necessary supports. Although the relationships between AF semantics and Partial Stable Models (PSMs) of logic programs has been deeply investigated, this is not the case for more general frameworks extending AF.In this paper we explore the relationships between AF-based frameworks and PSMs. We show that every AF-based framework Δ can be translated into a logic program PΔ so that the extensions prescribed by different semantics of Δ coincide with subsets of the PSMs of PΔ. We provide a logic programming approach that characterizes, in an elegant and uniform way, the semantics of several AF-based frameworks. This result allows also to define the semantics for new AF-based frameworks, such as AFs with recursive attacks and recursive deductive supports.


Author(s):  
Claudia Schulz ◽  
Francesca Toni

Different semantics of abstract Argumentation Frameworks (AFs) provide different levels of decisiveness for reasoning about the acceptability of conflicting arguments.The stable semantics is useful for applications requiring a high level of decisiveness, as it assigns to each argument the label "accepted" or the label "rejected". Unfortunately, stable labellings are not guaranteed to exist, thus raising the question as to which parts of AFs are responsible for the non-existence. In this paper, we address this question by investigating a more general question concerning preferred labellings (which may be less decisive than stable labellings but are always guaranteed to exist), namely why a given preferred labelling may not be stable and thus undecided on some arguments. In particular, (1) we give various characterisations of parts of an AF, based on the given preferred labelling, and (2) we show that these parts are indeed responsible for the undecisiveness if the preferred labelling is not stable. We then use these characterisations to explain the non-existence of stable labellings.


2010 ◽  
Vol 11 (1) ◽  
pp. 111-123 ◽  
Author(s):  
V. W. MAREK ◽  
J. B. REMMEL

AbstractWe investigate a proof system based on a guarded resolution rule and show its adequacy for the stable semantics of normal logic programs. As a consequence, we show that Gelfond–Lifschitz operator can be viewed as a proof-theoretic concept. As an application, we find a propositional theory EP whose models are precisely stable models of programs. We also find a class of propositional theories 𝓒P with the following properties. Propositional models of theories in 𝓒P are precisely stable models of P, and the theories in 𝓒T are of the size linear in the size of P.


Sign in / Sign up

Export Citation Format

Share Document