scholarly journals Development of Sintered .BETA.-titanium Base Hard Alloy.

1997 ◽  
Vol 44 (3) ◽  
pp. 301-307 ◽  
Author(s):  
Shigeya Sakaguchi ◽  
Kei Tokumoto
Keyword(s):  
Author(s):  
Y. L. Chen ◽  
S. Fujlshiro

Metastable beta titanium alloys have been known to have numerous advantages such as cold formability, high strength, good fracture resistance, deep hardenability, and cost effectiveness. Very high strength is obtainable by precipitation of the hexagonal alpha phase in a bcc beta matrix in these alloys. Precipitation hardening in the metastable beta alloys may also result from the formation of transition phases such as omega phase. Ti-15-3 (Ti-15V- 3Cr-3Al-3Sn) has been developed recently by TIMET and USAF for low cost sheet metal applications. The purpose of the present study was to examine the aging characteristics in this alloy.The composition of the as-received material is: 14.7 V, 3.14 Cr, 3.05 Al, 2.26 Sn, and 0.145 Fe. The beta transus temperature as determined by optical metallographic method was about 770°C. Specimen coupons were prepared from a mill-annealed 1.2 mm thick sheet, and solution treated at 827°C for 2 hr in argon, then water quenched. Aging was also done in argon at temperatures ranging from 316 to 616°C for various times.


Author(s):  
J. E. O'Neal ◽  
S. M. L. Sastry ◽  
J. W. Davis

The radiation-induced defect structure and nonequilibrium phase precipitation were studied in T1-6A1-4V (an alpha-beta titanium alloy), irradiated at 450 ± 30°C in row VII of the EBR-II to a fluence of 3.0 × 1021 neutrons/cm2 (En > 0.1 MeV). The Irradiation-induced defect microstructures were examined using bright-field, conventional dark-field, and weak-beam dark-field techniques. The nature of dislocations and dislocation loops was determined by standard-contrast experiments under two-beam conditions, and the small defect clusters were identified using the line-of-contrast criterion and black-white vector orientation criterion.


Author(s):  
Andrej K. Kuleshov ◽  
Vladimir V. Uglov ◽  
V. M. Anishchik ◽  
V. A. Firago ◽  
D. P. Rusalski ◽  
...  

Alloy Digest ◽  
1995 ◽  
Vol 44 (6) ◽  

Abstract SP 700 is a high strength, beta-rich alpha-beta titanium alloy. It was developed with the following attributes: (1) excellent hot- and cold-workability; (2) enhanced hardenability with a wide range of mechanical properties that can be obtained by heat treatment; and (3) superior superplastic behavior at low temperature (around 1050 K). This datasheet provides information on composition, physical properties, microstructure, elasticity, tensile properties, and bend strength. It also includes information on high temperature performance as well as heat treating. Filing Code: TI-107. Producer or source: NKK Corporation.


Alloy Digest ◽  
1991 ◽  
Vol 40 (8) ◽  

Abstract ALLVAC 6A1-6V-2Sn is a highly beta stabilized alpha + beta titanium alloy, a modification of the 6 A1-4V system. Added vanadium plus copper and iron produce the stabilizing effect. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ti-98. Producer or source: Teledyne Allvac.


Alloy Digest ◽  
1987 ◽  
Vol 36 (7) ◽  

Abstract UNS No. R54620 is an alpha-beta titanium alloy. It has an excellent combination of tensile strength, creep strength, toughness and high-temperature stability that makes it suitable for service to 1050 F. It is recommended for use where high strength is required. It has outstanding advantages for long-time use at temperatures to 800 F. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-86. Producer or source: Titanium alloy mills.


Alloy Digest ◽  
1980 ◽  
Vol 29 (9) ◽  

Abstract RMI 6A1-6V-2Sn is an alpha-beta titanium alloy that provides a tensile strength of 150,000 psi in the mill-annealed condition in section sizes up to 2 inches. It offers good corrosion resistance in applications requiring high strength-to-weight ratios at temperatures up to 750 F. Among its uses are rocket engine cases and ordnance components. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-79. Producer or source: RMI Company.


2004 ◽  
Author(s):  
S. L. Semiatin ◽  
B. C. Kirby ◽  
G. A. Salishchev

Sign in / Sign up

Export Citation Format

Share Document