scholarly journals Mechano-chemical Synthesis of Lithium Ion Conducting Materials in the System Li2O-Li2S-P2S5

2004 ◽  
Vol 51 (2) ◽  
pp. 91-97 ◽  
Author(s):  
Nobuya Machida ◽  
Yuki Yoneda ◽  
Toshihiko Shigematsu
2002 ◽  
Vol 14 (6) ◽  
pp. 2444-2449 ◽  
Author(s):  
Keiichi Iio ◽  
Akitoshi Hayashi ◽  
Hideyuki Morimoto ◽  
Masahiro Tatsumisago ◽  
Tsutomu Minami

ChemInform ◽  
2010 ◽  
Vol 33 (40) ◽  
pp. no-no
Author(s):  
Keiichi Iio ◽  
Akitoshi Hayashi ◽  
Hideyuki Morimoto ◽  
Masahiro Tatsumisago ◽  
Tsutomu Minami

1996 ◽  
Vol 143 (6) ◽  
pp. 1866-1870 ◽  
Author(s):  
Masahiro Kamata ◽  
Takao Esaka ◽  
Naoto Kodama ◽  
Shigenori Fujine ◽  
Kenji Yoneda ◽  
...  

2017 ◽  
Author(s):  
Younghee Lee ◽  
Daniela M. Piper ◽  
Andrew S. Cavanagh ◽  
Matthias J. Young ◽  
Se-Hee Lee ◽  
...  

<div>Atomic layer deposition (ALD) of LiF and lithium ion conducting (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloys was developed using trimethylaluminum, lithium hexamethyldisilazide (LiHMDS) and hydrogen fluoride derived from HF-pyridine solution. ALD of LiF was studied using in situ quartz crystal microbalance (QCM) and in situ quadrupole mass spectrometer (QMS) at reaction temperatures between 125°C and 250°C. A mass gain per cycle of 12 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C and decreased at higher temperatures. QMS detected FSi(CH<sub>3</sub>)<sub>3</sub> as a reaction byproduct instead of HMDS at 150°C. LiF ALD showed self-limiting behavior. Ex situ measurements using X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) showed a growth rate of 0.5-0.6 Å/cycle, in good agreement with the in situ QCM measurements.</div><div>ALD of lithium ion conducting (AlF3)(LiF)x alloys was also demonstrated using in situ QCM and in situ QMS at reaction temperatures at 150°C A mass gain per sequence of 22 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C. Ex situ measurements using XRR and SE showed a linear growth rate of 0.9 Å/sequence, in good agreement with the in situ QCM measurements. Stoichiometry between AlF<sub>3</sub> and LiF by QCM experiment was calculated to 1:2.8. XPS showed LiF film consist of lithium and fluorine. XPS also showed (AlF<sub>3</sub>)(LiF)x alloy consists of aluminum, lithium and fluorine. Carbon, oxygen, and nitrogen impurities were both below the detection limit of XPS. Grazing incidence X-ray diffraction (GIXRD) observed that LiF and (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film have crystalline structures. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of Li:F=1:1.1 and Al:Li:F=1:2.7: 5.4 for (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film. These atomic ratios were consistent with the calculation from QCM experiments. Finally, lithium ion conductivity (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film was measured as σ = 7.5 × 10<sup>-6</sup> S/cm.</div>


Author(s):  
Thomas F Fässler ◽  
Stefan Strangmüller ◽  
Henrik Eickkhoff ◽  
Wilhelm Klein ◽  
Gabriele Raudaschl-Sieber ◽  
...  

The increasing demand for a high-performance and low-cost battery technology promotes the search for Li+-conducting materials. Recently, phosphidotetrelates and aluminates were introduced as an innovative class of phosphide-based Li+-conducting materials...


1996 ◽  
Vol 29 (11) ◽  
pp. 3831-3838 ◽  
Author(s):  
Craig J. Hawker ◽  
Fengkui Chu ◽  
Peter J. Pomery ◽  
David J. T. Hill

Sign in / Sign up

Export Citation Format

Share Document