scholarly journals Preparation of Three-dimensionally Ordered Macroporous Li1.5Al0.5Ti1.5(PO4)3 by Colloidal Crystal Templating Method

2006 ◽  
Vol 53 (11) ◽  
pp. 856-859 ◽  
Author(s):  
Yasuhiro Isshiki ◽  
Kaoru Dokko ◽  
Kiyoshi Kanamura
2016 ◽  
Vol 6 (21) ◽  
pp. 7718-7728 ◽  
Author(s):  
Nengjie Feng ◽  
Chong Chen ◽  
Jie Meng ◽  
Yang Wu ◽  
Geng Liu ◽  
...  

Three-dimensionally ordered macroporous (3DOM) silicon-doped La0.8K0.2CoO3 perovskite catalysts were successfully prepared by a colloidal crystal templating method. The catalysts showed a well-ordered macroporous structure and exhibited high activity for soot removal.


2005 ◽  
Vol 284-286 ◽  
pp. 655-658 ◽  
Author(s):  
Kai Zhang ◽  
Newell R. Washburn ◽  
Joseph M. Antonucci ◽  
Carl G. Simon

Three dimensionally ordered macroporous sol-gel bioactive glasses (3DOM-BGs)are a type of biomaterial that is both bioactive and resorbable. In this study, 80 % SiO2 – 20 % CaO (molar fraction) 3DOM-BG particles were prepared using a colloidal crystal templating method via a sol-gel process. The as-prepared 3DOM-BG particles can quickly convert to a calcium-deficient, bone-like apatite after soaking in a simulated body fluid (SBF). MC3T3-E1 osteoblastic cells were cultured in the presence of 3DOM-BG particles. Preliminary results from cell studies showed that 3DOM-BG particles are not cytotoxic and are compatible with MC3T3-E1 osteoblast-like cells in vitro.


2019 ◽  
Vol 9 (8) ◽  
pp. 1835-1846 ◽  
Author(s):  
Peng Zhao ◽  
Fan Fang ◽  
Nengjie Feng ◽  
Chong Chen ◽  
Geng Liu ◽  
...  

A three-dimensionally ordered macroporous (3DOM) La0.5Sr0.5MnO3 perovskite was prepared by a colloidal crystal templating method, with extra mesopores created by selective dissolution method performed successively.


2007 ◽  
Vol 350 ◽  
pp. 195-198 ◽  
Author(s):  
Sang Wook Woo ◽  
Hiroyuki Nakano ◽  
Kaoru Dokko ◽  
Kiyoshi Kanamura

Macroporous LiCoO2 was prepared by a colloidal crystal templating method. Colloidal crystal consisting of monodisperse polystyrene particles was used as the template for the synthesis of macroporous LiCoO2. A Li-Co-O sol was injected into the template, and it was calcined at high temperatures. A porous membrane of LiCoO2 with three dimensionally ordered macroporous (3DOM) structure was obtained. The prepared material had a rock-salt type crystallographic structure with R3m space group. The interconnected macropores with relative uniform size (0.8~0.9 ;m) were observed on entire part of the membrane. The electrochemical properties of the 3DOM LiCoO2 were characterized with galvanostatic charge-discharge measurements in an organic electrolyte containing a lithium salt. The 3DOM LiCoO2 exhibited charge and discharge capacities of 136 and 107 mA h g-1, respectively, at around 3.9 V vs. Li/Li+, indicating that 3DOM LiCoO2 electrode had solid state redox reaction accompanying with Li+ ion insertion and extraction to CoO2 frameworks.


RSC Advances ◽  
2015 ◽  
Vol 5 (111) ◽  
pp. 91609-91618 ◽  
Author(s):  
Nengjie Feng ◽  
Yang Wu ◽  
Jie Meng ◽  
Chong Chen ◽  
Lei Wang ◽  
...  

Three-dimensionally ordered macroporous (3DOM) La1−xCexFe1−yCoyO3 (x = 0–0.4, y = 0–0.6) perovskite catalysts were successfully prepared by colloidal crystal templating method and employed for soot combustion.


2009 ◽  
Vol 02 (01) ◽  
pp. 19-22 ◽  
Author(s):  
KIYOSHI KANAMURA ◽  
SANG-WOOK WOO ◽  
KAORU DOKKO

Three-dimensionally ordered macroporous (3DOM) carbon with mesoporous walls was prepared by the colloidal crystal templating method using polystyrene (PS) and silica particles. Colloidal crystals consisting of monodispersed PS sphere (204 nm diameter) and silica particles (4–6 nm) were carbonized in Ar , and the silica was removed by etching in HF, and then 3DOM carbon with bimodal pore structure was obtained. Conducting polymers of polyaniline (PAn) and polypyrrole (PPy) were electrochemically deposited on the internal surface of macropores in 3DOM carbons. The mesopores were not closed after the deposition of the polymers. The composites were utilized as electrodes for electrochemical capacitors. The specific capacitances of prepared carbon– PAn and carbon– PPy composites were found to be 237 and 152 F g-1, respectively. The incorporation of the conducting polymers dramatically increased the charge storage capacities of the 3DOM carbon electrodes.


2006 ◽  
Vol 320 ◽  
pp. 263-266 ◽  
Author(s):  
Sang Wook Woo ◽  
Kaoru Dokko ◽  
Kiyoshi Kanamura

Three dimensionally ordered macroporous (3DOM) Li4Ti5O12 was successfully prepared by a colloidal crystal templating process. Colloidal crystal consisting of monodisperse polystyrene particles (1 9m diameter) was used as a template for the synthesis of macroporous Li4Ti5O12. A precursor sol consisting of titanium isopropoxide and lithium acetate was injected into the template, and it was calcined at high temperatures. A macroporous membrane of Li4Ti5O12 with inverse-opal structure was obtained. The prepared material had a spinel-related crystallographic structure. The interconnected pores with uniform size (0.8 9m) were clearly observed on entire part of the membrane. The electrochemical properties of the 3DOM Li4Ti5O12were characterized with cyclic voltammetry and glavanostatic charge-discharge in an organic electrolyte containing a lithium salt. 3DOM Li4Ti5O12 exhibited a discharge capacity of 160 mA h g-1 at the electrode potential of 1.55 V vs. Li/Li+ due to the solid state redox of Ti3+/4+ accompanying with Li+ ion insertion and extraction. The discharge capacity was close to the theoretical capacity (167 mA h g-1). This means that the Li+ insertion and extraction took place at all part of the 3DOM Li4Ti5O12 membrane.


Sign in / Sign up

Export Citation Format

Share Document