scholarly journals Approximate Solutions for Systems of Volterra Integro-differential Equations Using Laplace –Adomian Method

2020 ◽  
pp. 2655-2662
Author(s):  
Firas S. Ahmed

Some modified techniques are used in this article in order to have approximate solutions for systems of Volterra integro-differential equations. The suggested techniques are the so called Laplace-Adomian decomposition method and Laplace iterative method. The proposed methods are robust and accurate as can be seen from the given illustrative examples and from the comparison that are made with the exact solution.

Symmetry ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 149 ◽  
Author(s):  
Shahid Mahmood ◽  
Rasool Shah ◽  
Hassan khan ◽  
Muhammad Arif

In this research paper, a hybrid method called Laplace Adomian Decomposition Method (LADM) is used for the analytical solution of the system of time fractional Navier-Stokes equation. The solution of this system can be obtained with the help of Maple software, which provide LADM algorithm for the given problem. Moreover, the results of the proposed method are compared with the exact solution of the problems, which has confirmed, that as the terms of the series increases the approximate solutions are convergent to the exact solution of each problem. The accuracy of the method is examined with help of some examples. The LADM, results have shown that, the proposed method has higher rate of convergence as compare to ADM and HPM.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
S. Narayanamoorthy ◽  
T. L. Yookesh

We propose an algorithm of the approximate method to solve linear fuzzy delay differential equations using Adomian decomposition method. The detailed algorithm of the approach is provided. The approximate solution is compared with the exact solution to confirm the validity and efficiency of the method to handle linear fuzzy delay differential equation. To show this proper features of this proposed method, numerical example is illustrated.


Author(s):  
Badran Jasim Salim ◽  
Oday Ahmed Jasim ◽  
Zeiad Yahya Ali

<p class="Char">In this paper, the modified Adomian decomposition method (MADM) is usedto solve different types of differential equations, one of the numerical analysis methods for solving non linear partial differential equations (Drinfeld–Sokolov–Wilson system) and short (DSWS) that occur in shallow water flows. A Genetic Algorithm was used to find the optimal value for the parameter (a). We numerically solved the system (DSWS) and compared the result to the exact solution. When the value of it is low and close to zero, the MADM provides an excellent approximation to the exact solution. As well as the lower value of leads to the numerical algorithm of (MADM) approaching the real solution.  Finally, found the optimal value when a=-10 by using the Genetic Algorithm (G-MADM). All the computations were carried out with the aid of Maple 18 and Matlab to find the parameter value (a) by using the genetic algorithm as well as to figures drawing. The errors in this paper resulted from cut errors and mean square errors.</p>


Author(s):  
Vidya N. Bhadgaonkar ◽  
Bhausaheb R. Sontakke

The intention behind this paper is to achieve exact solution of one dimensional nonlinear fractional partial differential equation(NFPDE) by using Adomian decomposition method(ADM) with suitable initial value. These equations arise in gas dynamic model and heat conduction model. The results show that ADM is powerful, straightforward and relevant to solve NFPDE. To represent usefulness of present technique, solutions of some differential equations in physical models and their graphical representation are done by MATLAB software.


2021 ◽  
Vol 20 ◽  
pp. 712-716
Author(s):  
Zainab Mohammed Alwan

In this survey, viewed integral transformation (IT) combined with Adomian decomposition method (ADM) as ZMA- transform (ZMAT) coupled with (ADM) in which said ZMA decomposition method has been utilized to solve nonlinear partial differential equations (NPDE's).This work is very useful for finding the exact solution of (NPDE's) and this result is more accurate obtained with compared the exact solution obtained in the literature.


2014 ◽  
Vol 6 (01) ◽  
pp. 107-119 ◽  
Author(s):  
D. B. Dhaigude ◽  
Gunvant A. Birajdar

AbstractIn this paper we find the solution of linear as well as nonlinear fractional partial differential equations using discrete Adomian decomposition method. Here we develop the discrete Adomian decomposition method to find the solution of fractional discrete diffusion equation, nonlinear fractional discrete Schrodinger equation, fractional discrete Ablowitz-Ladik equation and nonlinear fractional discrete Burger’s equation. The obtained solution is verified by comparison with exact solution whenα= 1.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Hassan Eltayeb ◽  
Adem Kılıçman

We develop a method to obtain approximate solutions of nonlinear system of partial differential equations with the help of Sumudu decomposition method (SDM). The technique is based on the application of Sumudu transform to nonlinear coupled partial differential equations. The nonlinear term can easily be handled with the help of Adomian polynomials. We illustrate this technique with the help of three examples, and results of the present technique have close agreement with approximate solutions obtained with the help of Adomian decomposition method (ADM).


2021 ◽  
pp. 3679-3689
Author(s):  
Eman Mohmmed Namah

     The idea of the paper is to consolidate Mahgoub transform and variational iteration method (MTVIM) to solve fractional delay differential equations (FDDEs). The fractional derivative was in Caputo sense. The convergences of approximate solutions to exact solution were quick. The MTVIM is characterized by ease of application in various problems and is capable of simplifying the size of computational operations.  Several non-linear (FDDEs) were analytically solved as illustrative examples and the results were compared numerically. The results for accentuating the efficiency, performance, and activity of suggested method were shown by comparisons with Adomian Decomposition Method (ADM), Laplace Adomian Decomposition Method (LADM), Modified Adomian Decomposition Method (MADM) and Homotopy Analysis Method (HAM).


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Abdelhalim Ebaid

The formation of liver zones is modeled by a system of two integropartial differential equations. In this research, we introduce the mathematical formulation of these integro-partial differential equations obtained by Bass et al. in 1987. For better understanding of this mathematical formulation, we present a medical introduction for the liver in order to make the formulation as clear as possible. In applied mathematics, the Adomian decomposition method is an effective procedure to obtain analytic and approximate solutions for different types of operator equations. This Adomian decomposition method is used in this work to solve the proposed model analytically. The stationary solutions (as time tends to infinity) are also obtained through it, which are in full agreement with those obtained by Bass et al. in 1987.


Author(s):  
Sumayah Ghaleb Othman ◽  
Yahya Qaid Hasan

Aims/ Objectives: In this article, we use Adomian Decomposition method (ADM) for solving initial value problems in the higher order ordinary differential equations. Many researchers have used the ADM in order to find convergent as well as exact solutions of different types of equations. Therefore, the ADM is considered as an effective and successful method for solving differential equations. In this paper, we presented some suggested amendments to the ADM by using a new differential operator in order to find solutions for higher order types of equations. We demonstrated the effectiveness of this method through many examples and we find out that we get an approximate solutions using the proposed amendments. We can conclude that the suggested modification of ADM is afftective and produces reliable results.


Sign in / Sign up

Export Citation Format

Share Document