INTEGRATION OF DAYLIGHT WITH ELECTRIC LIGHTING IN COMMERCIAL BUILDINGS: A CASE STUDY FROM NEPAL

2021 ◽  
Author(s):  
O.S. Banjara ◽  
D. Bista ◽  
A. Bista ◽  
P. Bhusal

Daylight attributes to the aggregate of direct and indirect lights originating from the sun during the daytime. Integrating daylight with electrical lighting can serve as a means to lessen electricity costs for buildings. Geographic location and weather conditions facilitate most of the areas of Nepal to receive on average 12 hours of daylight and have huge energy-saving potential. However, the integration of daylight has not been admitted in the building code of Nepal. Moreover, contemporary architectural design lacks employment of techniques illustrated by illumination engineering to integrate daylight. This study analyses the plausibility and benefits of integrating daylight with electric light for a typical commercial building of Nepal employing the DIALux model and simulation. Simulation integrating energy-efficient electric light and daylight was done to observe illumination levels and light power density. For daylight performance, year-round conditions were observed for three different sky types. Modification of building architecture to integrate daylighting components was also studied. In the later part of the study, analysis was done to observe energy-saving potential and financial benefits. Results designated the plausibility of blending daylight with electrical lighting in the building for all-sky conditions. Extensive energy thrift was observed and was higher with added daylight components. Recommendations of the study to blend light sources and incorporation of daylight components are attainable with current technology and trend in Nepal with accompanying benefits of energy-saving, reduced operation, and reduced maintenance cost.

2011 ◽  
Vol 128-129 ◽  
pp. 1217-1221
Author(s):  
Quan Le Liu ◽  
Wei Chen

The quantity of official cars increased with the speed exceeding 20% every year which need much more energy be consumed to meet the official car needs. To investigate the energy saving potential of official cars in China, This paper introduced the strategy method with systemic viewpoint to reduce official cars energy consumption through analyzing the reason of high energy consuming of official cars. The resulted showed that only reduce the quantities and maintenance cost, and decline the displacement and using frequency can realize fuel efficiency of official cars.


Author(s):  
Jialin Yang ◽  
Huina Li ◽  
Jizhou Li ◽  
Bin Hou ◽  
Yong Zhen

AbstractThe comprehensive energy-saving potential evaluation method of the energy-saving schemes of a distribution network considering the power uncertainty of source and load is studied in this paper. The K-means clustering method is firstly employed to extract typical scenarios of distribution network, and the forward-push back method is used to calculate the power flow in typical scenarios, then energy-saving reconstruction schemes are formulated according to the power flow calculation results. A comprehensive energy saving potential evaluation index system that consists the improvement rate of network loss, line loss rate, transformer loss rate, annual electricity saving cost, annual equipment investment cost, annual maintenance cost and voltage quality improvement rate is built, and the comprehensive evaluation method based on DEMATEL-ANP-TOPSIS mixed decision model is used to evaluate the comprehensive energy-saving potential of the energy-saving reconstruction schemes regarding the index system. Finally, the optimal reconstruction scheme is selected based on the evaluation results of energy saving potential in multiple scenarios. The effectiveness of the proposed method is verified by an example in IEEE-33 node distribution network.


2018 ◽  
pp. 99-109 ◽  
Author(s):  
Sanaz Bozorg Chenani ◽  
Rami-Samuli Rasanen ◽  
Eino Tetri

Road lighting is on the verge of one of the most attentive changes since its first introduction. The synergetic effect of the advancement of road lighting technology and usage pattern is going to change the concept of road lighting. By most estimates, light emitting diodes (LEDs) are the most energy efficient light sources that can be used in road lighting. Today, the energy saving potential when replacing HPS lamps with LED luminaires is one-third with current technology and two-thirds with improved technology in the future. This technological transformation has the potential of energy saving up to 83 % in comparison with HPS lamps. The energy saving is achievable with changing the pattern of use by intelligent road lighting control based on reducing burning hours. Intelligent road lighting can be based on such parameters as traffic density, ambient light, road condition and weather circumstances. It can also be more dynamic and consider the combined effect of road lighting and individual car headlights. The widespread adaptation of these emerging technologies is envisioned to lead towards more sustainable lighting.


2015 ◽  
Vol 83 ◽  
pp. 140-146 ◽  
Author(s):  
Emanuele Naboni ◽  
Antonio Malcangi ◽  
Yi Zhang ◽  
Furio Barzon

2018 ◽  
Vol 29 (4) ◽  
pp. 722-739 ◽  
Author(s):  
Francesco De Luca ◽  
Raimo Simson ◽  
Hendrik Voll ◽  
Jarek Kurnitski

Purpose Electric lighting accounts for a large share of energy consumption in commercial buildings. Utilization of daylight can significantly help to reduce the need for artificial lighting, increase workers productivity, customers’ satisfaction and consequently improve sales. However, excessive use of glazing and absence of lighting controls can contribute greatly to higher energy need for heating and cooling and cause undesired glare effects. Thus, optimizing the size, position and materials of external glazing, with the addition of deflectors and dynamic artificial lighting, can become key aspects in the design of sustainable low energy buildings. The purpose of this paper is to analyze daylight potential and energy performance of a hall-type commercial building, situated in the cold climate of Finland, by utilizing different combinations of skylights, windows and lighting controls. Design/methodology/approach The authors have used computer simulations to estimate daylight and energy performance of a single floor commercial building in relation to various combinations of skylights and windows with variable glazing materials, light deflectors and zonal lighting controls. Findings The results show that electric light energy saving potential ranges from a negligible 1.9 percent to a significant 58.6 percent in the case of glass skylights and wall windows using multi-zone lighting control. Total delivered energy ranges between increase of 1.5 and 21.2 percent in the cases with single zone lighting control and between decrease of 4.5 percent and increase of 4.5 percent in the cases with multi-zone control. The highest decrease in primary energy consumption was 2.2 percent for single zone and 17.6 percent for multi-zone lighting control. The research underlines the significant potential of electric light energy savings using daylighting strategies that, including the control of direct solar access for glare and internal gains, can be more than 50 percent. Originality/value This research combines accurate daylight and energy assessment for commercial hall buildings based in cold climate region with multiple design variations. The novelty of this work is the consideration of interior elements, shelves and deflectors, in the calculations. This is made possible through the combined use of validated simulation platforms for detailed annual daylighting and electric lighting calculation (Radiance and Daysim) and energy analysis (IDA-ICE, Equa Simulation AB). This method allows to obtain a reliable assessment of the potential of using natural light sources in buildings.


2018 ◽  
Vol 22 (Suppl. 2) ◽  
pp. 567-576
Author(s):  
Chunzhi Zhang ◽  
Nianxia Yuan ◽  
Qianjun Mao

With the rapid development of large-scale public buildings, energy consumption has increased, of which the energy consumption of comprehensive commercial buildings can reach 10~20 times the common building energy consumption, and has great energy saving potential. In this paper, a large comprehensive commercial building in Chengdu is taken as an example to analyze the energy consumption through the actual energy consumption data, viewed from the energy-saving and emission-reduction and static investment payback period point. The results show that the energy saving rate of the building can be achieved by 32.64%, the emission reduction is 6196.52 t CO2 per year, and the investment recovery period is only about 0.90 years, which provides a reference for similar buildings.


Sign in / Sign up

Export Citation Format

Share Document