A Study on Production Planning of Multi-Products Mixed Production Lines: Focused on Automobile Camera Production Lines

2020 ◽  
Vol 20 (1) ◽  
pp. 90-109
Author(s):  
Yoonseok Jang ◽  
Dongmin Son ◽  
Bongju Jeong
2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Najmeh Madadi ◽  
Kuan Yew Wong

In this study, an attempt has been made to develop a multiobjective fuzzy aggregate production planning (APP) model that best serves those companies whose aim is to have the best utilization of their resources in an uncertain environment while trying to keep an acceptable degree of quality and customer service level simultaneously. In addition, the study takes into account the performance and availability of production lines. To provide the optimal solution to the proposed model, first it was converted to an equivalent crisp multiobjective model and then goal programming was applied to the converted model. At the final step, the IBM ILOG CPLEX Optimization Studio software was used to obtain the final result based on the data collected from an automotive parts manufacturing company. The comparison of results obtained from solving the model with and without considering the performance and availability of production lines, revealed the significant importance of these two factors in developing a real and practical aggregate production plan.


2021 ◽  
Vol 11 (20) ◽  
pp. 9687
Author(s):  
Jun-Hee Han ◽  
Ju-Yong Lee ◽  
Bongjoo Jeong

This study considers a production planning problem with a two-level supply chain consisting of multiple suppliers and a manufacturing plant. Each supplier that consists of multiple production lines can produce several types of semi-finished products, and the manufacturing plant produces the finished products using the semi-finished products from the suppliers to meet dynamic demands. In the suppliers, different types of semi-finished products can be produced in the same batch, and products in the same batch can only be started simultaneously (at the same time) even if they complete at different times. The purpose of this study is to determine the selection of suppliers and their production lines for the production of semi-finished products for each period of a given planning horizon, and the objective is to minimize total costs associated with the supply chain during the whole planning horizon. To solve this problem, we suggest a mixed integer programming model and a heuristic algorithm. To verify performance of the algorithm, a series of tests are conducted on a number of instances, and the results are presented.


Author(s):  
K. V. Zakharchenkov ◽  
Zh. A. Mrochek ◽  
T. V. Mrochek

One of the modern directions of increase in economic efficiency of the enterprise is a production planning automation, including the automated scheduling of production. Introduction of ready program solutions for automated preparation of production schedules (APS, MES-systems) at enterprises is constrained by the complexity and high cost of adapting to the specific conditions of the enterprise, implementation and maintenance. The complexity of the problem is determined by a large number of product names, rapid changes in the operational environment and the need for clear interaction with the warehouse. The task is multicriterion as it is necessary to provide the maximum loading of each production line with a minimum of readjustments, and at the same time the schedule must comply with the terms of shipment of products, taking into account the availability of raw materials for production. Therefore, the authors have developed an algorithm and software that allow for an acceptable time to make an admissible, often optimal schedule for the production of preinsulated pipes and shaped products in batches with the individual completion of consistent service, taking into account production and technological limitations in SMITH-Yartsevo, Ltd (Russia). In this case, each group of products is divided into batches in accordance with the McNaughton rule (wrap around rule), and the resulting batches are distributed along the production lines. For the choice of the optimal schedule it is necessary to make several schedules with different values of the number of readjustments and select the one that best meets the criteria of the task.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
S Mohd Baki ◽  
Jack Kie Cheng

Production planning is often challenging for small medium enterprises (SMEs) company. Most of the SMEs are having difficulty in determining the optimal level of the production output which can affect their business performance. Product mix optimization is one of the main key for production planning. Many company have used linear programming model in determining the optimal combination of various products that need to be produced in order to maximize profit. Thus, this study aims for profit maximization of a SME company in Malaysia by using linear programming model. The purposes of this study are to identify the current process in the production line and to formulate a linear programming model that would suggest a viable product mix to ensure optimum profitability for the company. ABC Sdn Bhd is selected as a case study company for product mix profit maximization study. Some conclusive observations have been drawn and recommendations have been suggested. This study will provide the company and other companies, particularly in Malaysia, an exposure of linear programming method in making decisions to determine the maximum profit for different product mix.


CIM Journal ◽  
2019 ◽  
Vol 10 (1) ◽  
Author(s):  
E. Goris Cervantes ◽  
S. P. Upadhyay ◽  
H. Askari-Nasab

Sign in / Sign up

Export Citation Format

Share Document