scholarly journals Tectonic Stress Distribution in the Song Tranh 2 Hydropower Reservoir: Implication for Induced Earthquake

Author(s):  
Luong Thi Thu Hoai ◽  
Pham Nguyen Ha Vu ◽  
Nguyen Dinh Nguyen ◽  
Hoang Thi Phuong Thao ◽  
Nguyen Van Vuong

The Song Tranh 2 hydropower reservoir was built in Tra My area, Quang Nam province, composing magmatic and high-grade metamorphic rocks of the northern part of the Kon Tum massif. Since the reservoir was put into operation, induced earthquakes have occurred in the Song Tranh 2 hydropower reservoir and its vicinity. Tectonically, the northwest-southeast to east-west striking faults developed strongly. Detailed analysis of slickensides and attitude of faults occurring in the studied area have shown that the northwest-southeast striking faults are reactivated as dextral ones during the Pliocene-Quaternary up to the present day. Based on the geometric distribution of the fault network, kinematic characteristics, and the youngest tectonic stress regime, we computed the distribution of tectonic stress in the studied area. Computation results show two positive anomalies of stress directly related to the northwest-southeast faults numbered 2, 10, 11a, 11b and sub-latitude striking fault numbered 1. These faults run in line with the local river channels and are likely to reactivate and generate induced earthquakes.  

2017 ◽  
Author(s):  
Matthew P. McKay ◽  
◽  
William T. Jackson

2013 ◽  
Vol 81 ◽  
pp. 1-15 ◽  
Author(s):  
H.M. Hussein ◽  
K.M. Abou Elenean ◽  
I.A. Marzouk ◽  
I.M. Korrat ◽  
I.F. Abu El-Nader ◽  
...  

2018 ◽  
Vol 175 (6) ◽  
pp. 1997-2008 ◽  
Author(s):  
Lucia Fojtíková ◽  
Václav Vavryčuk

Abstract We study two earthquake swarms that occurred in the Ubaye Valley, French Alps within the past decade: the 2003–2004 earthquake swarm with the strongest shock of magnitude ML = 2.7, and the 2012–2015 earthquake swarm with the strongest shock of magnitude ML = 4.8. The 2003–2004 seismic activity clustered along a 9-km-long rupture zone at depth between 3 and 8 km. The 2012–2015 activity occurred a few kilometres to the northwest from the previous one. We applied the iterative joint inversion for stress and fault orientations developed by Vavryčuk (2014) to focal mechanisms of 74 events of the 2003–2004 swarm and of 13 strongest events of the 2012–2015 swarm. The retrieved stress regime is consistent for both seismic activities. The σ 3 principal axis is nearly horizontal with azimuth of ~ 103°. The σ 1 and σ 2 principal axes are inclined and their stress magnitudes are similar. The active faults are optimally oriented for shear faulting with respect to tectonic stress and differ from major fault systems known from geological mapping in the region. The estimated low value of friction coefficient at the faults 0.2–0.3 supports an idea of seismic activity triggered or strongly affected by presence of fluids.


Author(s):  
Alex Maltman

We come now to the metamorphic rocks, the result of modifications to already existing rock. I’m well aware that this can all seem a bit mysterious. After all, no one has ever seen the changes take place; no one has ever witnessed a metamorphic rock form—the processes are imperceptibly slow, and they happen deep in the Earth’s crust, way out of sight. Why should these changes happen? Well, they are primarily driven by increases in pressure and temperature, so we begin with a look at these two factors. There are sites in the Earth’s crust where material becomes progressively buried. It happens, for example, where a tectonic plate is driving underneath another one, taking rocks ever deeper as it descends. It can happen in the central area of a plate that is stretching and sagging, allowing thick accumulations of sediment. It’s pretty self-evident that as buried material gets deeper, because of the growing weight of rocks above bearing down due to gravity, it becomes subjected to increasing burial pressure. Less intuitive, though, is the fact that this pressure acts on a volume of rock equally in all directions. Imagine a small volume of rock at depth. It’s bearing the weight of the rocks above it, and so it responds by trying to move downward and to spread out laterally. Of course, it can’t because it’s constrained all around by other volumes of rock that are trying to do exactly the same thing. And so the downward gravity is translated into an all-around pressure. It’s the same effect as diving down to the bottom of a swimming pool. You feel the increased pressure owing to the weight of water above, but you feel it equally in all directions. All-round pressure like this can cause things to change in volume, through changing their density, but it can’t change their shape. However, there can be another kind of pressure as well, and this does have direction, and it can cause change of shape. In the Earth, we call it tectonic stress. It comes about through heat-driven motions in the Earth, including the movement of tectonic plates.


1996 ◽  
Vol 33 (5) ◽  
pp. 649-655
Author(s):  
David Morin ◽  
Michel Jébrak ◽  
Robert Marquis

A subcircular positive magnetic anomaly and breccias affecting a basanite and its country-rock metasedimentary rocks reveal the presence of a diatreme with a diameter of approximately 420 m, at Eastman, in the Quebec Appalachians. The post-Middle Devonian age, the position in the line of the Monteregian plutons, and the basanite composition, which is comparable to that of the Cretaceous Monteregian alkaline lamprophyres, suggest that the diatreme is related to the Monteregian magmatism. It is located at the junction of two orthogonal tectonic corridors: the north-north-east Baie Verte – Brompton line and an east−west fault network along the prolongation of the Ottawa−Bonnechère Graben. These structures are zones of weakness that probably served as a conduit for the ascending magma and near-surface water to trigger phreatomagmatic eruptions.


2018 ◽  
Vol 57 ◽  
pp. 1-9 ◽  
Author(s):  
Matthew P. McKay ◽  
William T. Jackson ◽  
Angela M. Hessler

2020 ◽  
Author(s):  
Bernd Schurr ◽  
Lukas Lehmann ◽  
Christian Sippl ◽  
Wasja Bloch

<p>Subduction zone forearcs deform transiently and permanently due to the frictional coupling with the converging lower plate. Transient stresses are mostly the elastic response to the spatio-temporally variable plate coupling through the seismic cycle. Long-term deformation depends e.g., on the plate convergence geometry, where obliqueness or change in obliqueness play important roles. Here we use the Integrated Plate Boundary Observatory Chile (IPOC) and additional temporal networks to determine source mechanisms for upper plate earthquakes in the northern Chile subduction zone. We find that earthquakes in the South American crust under the sea and under the Coastal Cordillera show a remarkably homogenous north-south, i.e. trench-parallel, compressional stress field. Earthquake fault mechanisms are dominated by east-west striking thrusts. Further inland, where the lower plate becomes uncoupled, the stress field is more varied with direction east-west to southeast-northwest (approx. convergence parallel) dominating. The peculiar stress-regime above the plate-coupling-zone almost perpendicular to plate convergence direction may be explained by a change in subduction obliqueness due to the concave shape of the plate margin.</p>


1998 ◽  
Vol 17 ◽  
Author(s):  
V. K. Singh ◽  
S. P. Singh ◽  
P. S. Saklani ◽  
C. S. Dubey

Structural analysis reveals that the Central Crystallines in the Garhwal region were subjected to four phases of deformations (D1 to D4). The D1 deformational phase is highly obliterated and usually found as F1 intrafolial (rootless) tight isoclinal folds in migmatites and gneisses. The D2 deformational phase produced strong pervasive S2 schistosity and asymmetric and open fold (F2) plunging 20-30° towards ENE-WSW. The L2 lineation plunge 5-10° towards east-west is well developed in medium grade metamorphic rocks. The D1 deformations were responsible for F3 folds reflected in large scale anticlinal and synclinal, overturned and recumbent folds, which have 10-40° plunges towards NW. The late D3 deformational stresses were responsible for shearing along the middle limbs of F1 folds and they ultimately initiated thrusting. The NNE­ SSW plunging mineral or stretching lineation (L3), S3 crenulation cleavage and S-C fabrics were developed during the dominant ductile shearing related to the late D3 deformation. The D4 phase characterised by brittle-ductile deformation (minor kinks, puckers, transverse/transcurrent faults, and S-C' fabrics) and extensive cataclasis along thrust- and fault-zones reflects the last episode of deformation. The structural and geochronological data indicate that D1 and D2 deformation episodes may be related to the Precambrian time while D3 and D4 are exclusively of the Tertiary age.


2020 ◽  
Vol 91 (4) ◽  
pp. 1979-1985 ◽  
Author(s):  
Xiaohua Xu ◽  
David T. Sandwell ◽  
Bridget Smith-Konter

Abstract Interferometric Synthetic Aperture Radar is an important tool for imaging surface deformation from large continental earthquakes. Here, we present maps of coseismic displacement and strain from the 2019 Ridgecrest earthquakes using multiple Sentinel-1 images. We provide three types of interferometric products. (1) Standard interferograms from two look directions provide an overview of the deformation and can be used for modeling coseismic slip. (2) Phase gradient maps from stacks of coseismic interferograms provide high-resolution (∼30  m) images of strain concentration and surface fracturing that can be used to guide field surveys. (3) High-pass filtered, stacked, unwrapped phase is decomposed into east–west and up–down, south–north components and is used to determine the sense of fault slip. The resulting phase gradient maps reveal over 300 surface fractures, including triggered slip on the Garlock fault. The east–west component of high-pass filtered phase reveals the polarity of the strike-slip offset (right lateral or left lateral) for many of the fractures. We find a small number of fractures that have slip polarity that is retrograde to the background tectonic stress. This is similar to observations of retrograde slip observed near the 1999 Mw 7.1 Hector Mine rupture, but the Ridgecrest observations are more completely imaged by the frequent and high-quality acquisitions from the twin Sentinel-1 spacecrafts. Determining whether the retrograde features are triggered slip on existing faults, or compliant fault deformation in response to stress changes from the Ridgecrest earthquakes, or new Coulomb-style failures, will require additional field work, modeling, and analysis.


Sign in / Sign up

Export Citation Format

Share Document