scholarly journals Model Prediksi Interaksi Senyawa dan Protein untuk Drug Repositioning menggunakan Deep Semi-Supervised Learning

2020 ◽  
Vol 7 (4) ◽  
pp. 727
Author(s):  
Larasati Larasati ◽  
Wisnu Ananta Kusuma ◽  
Annisa Annisa

<p class="Abstrak"><em>Drug repositioning</em> adalah penggunaan senyawa obat yang sudah lolos uji sebelumnya untuk mengatasi penyakit baru selain penyakit awal obat tersebut ditujukan. <em>Drug repositioning </em>dapat dilakukan dengan memprediksi interaksi senyawa obat dengan protein penyakit yang bereaksi positif. Salah satu tantangan dalam prediksi interaksi senyawa dan protein adalah masalah ketidakseimbangan data. <em>Deep semi-supervised learning </em>dapat menjadi alternatif untuk menangani model prediksi dengan data yang tidak seimbang. Proses <em>pre-training </em>berbasis <em>unsupervised learning</em> pada <em>deep semi-supervised learning </em>dapat merepresentasikan input dari <em>unlabeled data</em> (data mayoritas) dengan baik dan mengoptimasi inisialisasi bobot pada <em>classifier</em>. Penelitian ini mengimplementasikan <em>Deep Belief Network</em> (DBN) sebagai <em>pre-training</em> dan <em>Deep Neural Network</em> (DNN) sebagai <em>classifier</em>. Data yang digunakan pada penelitian ini adalah <em>dataset</em> ion channel, GPCR, dan nuclear receptor yang bersumber dari pangkalan data KEGG BRITE, BRENDA, SuperTarget, dan DrugBank. Hasil penelitian ini menunjukkan pada <em>dataset</em> tersebut, <em>pre-training</em> berupa ekstraksi fitur memberikan efek optimasi dilihat dari peningkatan performa model DNN pada akurasi (3-4.5%), AUC (4.5%), <em>precision</em><em> </em>(5.9-6%), dan F-measure (3.8%).</p><p class="Abstrak"> </p><p class="Abstrak"><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Drug repositioning is the reuse of an existing drug to treat a new disease other than its original medical indication. Drug repositioning can be done by predicting the interaction of drug compounds with disease proteins that react positively. One of the challenges in predicting the interaction of compounds and proteins is imbalanced data. Deep semi-supervised learning can be an alternative to handle prediction models with imbalanced data. The unsupervised learning based pre-training process in deep semi-supervised learning can represent input from unlabeled data (majority data) properly and optimize initialization of weights on the classifier. This study implements the Deep Belief Network (DBN) as a pre-training with Deep Neural Network (DNN) as a classifier. The data used in this study are ion channel, GPCR, and nuclear receptor dataset sourced from KEGG BRITE, BRENDA, SuperTarget, and DrugBank databases. The results of this study indicate that pre-training as feature extraction had an optimization effect. This can be seen from DNN performance improvement in accuracy (3-4.5%), AUC (4.5%), precision (5.9-6%), and F-measure (3.8%).<strong></strong></em></p><p class="Abstrak"><em><strong><br /></strong></em></p>

Healthcare ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 234 ◽  
Author(s):  
Hyun Yoo ◽  
Soyoung Han ◽  
Kyungyong Chung

Recently, a massive amount of big data of bioinformation is collected by sensor-based IoT devices. The collected data are also classified into different types of health big data in various techniques. A personalized analysis technique is a basis for judging the risk factors of personal cardiovascular disorders in real-time. The objective of this paper is to provide the model for the personalized heart condition classification in combination with the fast and effective preprocessing technique and deep neural network in order to process the real-time accumulated biosensor input data. The model can be useful to learn input data and develop an approximation function, and it can help users recognize risk situations. For the analysis of the pulse frequency, a fast Fourier transform is applied in preprocessing work. With the use of the frequency-by-frequency ratio data of the extracted power spectrum, data reduction is performed. To analyze the meanings of preprocessed data, a neural network algorithm is applied. In particular, a deep neural network is used to analyze and evaluate linear data. A deep neural network can make multiple layers and can establish an operation model of nodes with the use of gradient descent. The completed model was trained by classifying the ECG signals collected in advance into normal, control, and noise groups. Thereafter, the ECG signal input in real time through the trained deep neural network system was classified into normal, control, and noise. To evaluate the performance of the proposed model, this study utilized a ratio of data operation cost reduction and F-measure. As a result, with the use of fast Fourier transform and cumulative frequency percentage, the size of ECG reduced to 1:32. According to the analysis on the F-measure of the deep neural network, the model had 83.83% accuracy. Given the results, the modified deep neural network technique can reduce the size of big data in terms of computing work, and it is an effective system to reduce operation time.


2018 ◽  
Vol 27 (6) ◽  
pp. 3049-3063 ◽  
Author(s):  
Zhizhong Han ◽  
Zhenbao Liu ◽  
Chi-Man Vong ◽  
Yu-Shen Liu ◽  
Shuhui Bu ◽  
...  

2021 ◽  
Author(s):  
Long Ngo Hoang Truong ◽  
Edward Clay ◽  
Omar E. Mora ◽  
Wen Cheng ◽  
Maninder Kaur ◽  
...  

2017 ◽  
Vol 25 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Jiaheng Xie ◽  
Xiao Liu ◽  
Daniel Dajun Zeng

Abstract Objective Recent years have seen increased worldwide popularity of e-cigarette use. However, the risks of e-cigarettes are underexamined. Most e-cigarette adverse event studies have achieved low detection rates due to limited subject sample sizes in the experiments and surveys. Social media provides a large data repository of consumers’ e-cigarette feedback and experiences, which are useful for e-cigarette safety surveillance. However, it is difficult to automatically interpret the informal and nontechnical consumer vocabulary about e-cigarettes in social media. This issue hinders the use of social media content for e-cigarette safety surveillance. Recent developments in deep neural network methods have shown promise for named entity extraction from noisy text. Motivated by these observations, we aimed to design a deep neural network approach to extract e-cigarette safety information in social media. Methods Our deep neural language model utilizes word embedding as the representation of text input and recognizes named entity types with the state-of-the-art Bidirectional Long Short-Term Memory (Bi-LSTM) Recurrent Neural Network. Results Our Bi-LSTM model achieved the best performance compared to 3 baseline models, with a precision of 94.10%, a recall of 91.80%, and an F-measure of 92.94%. We identified 1591 unique adverse events and 9930 unique e-cigarette components (ie, chemicals, flavors, and devices) from our research testbed. Conclusion Although the conditional random field baseline model had slightly better precision than our approach, our Bi-LSTM model achieved much higher recall, resulting in the best F-measure. Our method can be generalized to extract medical concepts from social media for other medical applications.


2018 ◽  
Author(s):  
Hiroyuki Fukuda ◽  
Kentaro Tomii

AbstractProtein contact prediction is a crucially important step for protein structure prediction. To predict a contact, approaches of two types are used: evolutionary coupling analysis (ECA) and supervised learning. ECA uses a large multiple sequence alignment (MSA) of homologue sequences and extract correlation information between residues. Supervised learning uses ECA analysis results as input features and can produce higher accuracy. As described herein, we present a new approach to contact prediction which can both extract correlation information and predict contacts in a supervised manner directly from MSA using a deep neural network (DNN). Using DNN, we can obtain higher accuracy than with earlier ECA methods. Simultaneously, we can weight each sequence in MSA to eliminate noise sequences automatically in a supervised way. It is expected that the combination of our method and other meta-learning methods can provide much higher accuracy of contact prediction.


2022 ◽  
Author(s):  
Jinxin Wei

<p>an auto-encoder which can be split into two parts is designed. The two parts can work well separately. The top half is an abstract network which is trained by supervised learning and can be used to classify and regress. The bottom half is a concrete network which is accomplished by inverse function and trained by self-supervised learning. It can generate the input of abstract network from concept or label. It is tested by tensorflow and mnist dataset. The abstract network is like LeNet-5. The concrete network is the inverse of the abstract network.Lossy compression can achieved by the test. The large compression ratio which is 19.6 is achieved. The decompression performance is ok through regression which treats classification as regression.</p>


2021 ◽  
Author(s):  
Jinxin Wei

<p>an auto-encoder which can be split into two parts is designed. The two parts can work well separately. The top half is an abstract network which is trained by supervised learning and can be used to classify and regress. The bottom half is a concrete network which is accomplished by inverse function and trained by self-supervised learning. It can generate the input of abstract network from concept or label. It is tested by tensorflow and mnist dataset. The abstract network is like LeNet-5. The concrete network is the inverse of the abstract network.Lossy compression can achieved by the test. The large compression ratio which is 19.6 is achieved. The decompression performance is ok through regression which treats classification as regression.</p>


2021 ◽  
Vol 25 (2) ◽  
pp. 169-178
Author(s):  
Changro Lee

Despite the popularity deep learning has been gaining, measuring the uncertainty within the result has not met expectations in many deep learning applications and this includes property valuation. In real-world tasks, however, rather than simply requiring predictions, assurance of the certainty of the predictions is also demanded. In this study, supervised learning is combined with unsupervised learning to bridge this gap. A method based on principal component analysis, a popular tool of unsupervised learning, was developed and used to represent the uncertainty in property valuation. Then, a neural network, a representative algorithm to implement supervised learning, was constructed, and trained to predict land prices. Finally, the uncertainty that was measured using principal component analysis was incorporated into the price predicted by the neural network. This hybrid approach is shown to be likely to improve the credibility of the valuation work. The findings of this study are expected to generate interest in the integration of the two learning approaches, thereby promoting the rapid adoption of deep learning tools in the property valuation industry.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 298 ◽  
Author(s):  
Shenshen Gu ◽  
Yue Yang

The Max-cut problem is a well-known combinatorial optimization problem, which has many real-world applications. However, the problem has been proven to be non-deterministic polynomial-hard (NP-hard), which means that exact solution algorithms are not suitable for large-scale situations, as it is too time-consuming to obtain a solution. Therefore, designing heuristic algorithms is a promising but challenging direction to effectively solve large-scale Max-cut problems. For this reason, we propose a unique method which combines a pointer network and two deep learning strategies (supervised learning and reinforcement learning) in this paper, in order to address this challenge. A pointer network is a sequence-to-sequence deep neural network, which can extract data features in a purely data-driven way to discover the hidden laws behind data. Combining the characteristics of the Max-cut problem, we designed the input and output mechanisms of the pointer network model, and we used supervised learning and reinforcement learning to train the model to evaluate the model performance. Through experiments, we illustrated that our model can be well applied to solve large-scale Max-cut problems. Our experimental results also revealed that the new method will further encourage broader exploration of deep neural network for large-scale combinatorial optimization problems.


Sign in / Sign up

Export Citation Format

Share Document