scholarly journals Wandering continents of the Indian Ocean

2019 ◽  
Vol 122 (4) ◽  
pp. 397-420 ◽  
Author(s):  
L.D. Ashwal

Abstract On the last page of his 1937 book “Our Wandering Continents” Alex Du Toit advised the geological community to develop the field of “comparative geology”, which he defined as “the study of continental fragments”. This is precisely the theme of this paper, which outlines my research activities for the past 28 years, on the continental fragments of the Indian Ocean. In the early 1990s, my colleagues and I were working in Madagascar, and we recognized the need to appreciate the excellent geological mapping (pioneered in the 1950s by Henri Besairie) in a more modern geodynamic context, by applying new ideas and analytical techniques, to a large and understudied piece of continental crust. One result of this work was the identification of a 700 to 800 Ma belt of plutons and volcanic equivalents, about 450 km long, which we suggested might represent an Andean-type arc, produced by Neoproterozoic subduction. We wondered if similar examples of this magmatic belt might be present elsewhere, and we began working in the Seychelles, where late Precambrian granites are exposed on about 40 of the >100 islands in the archipelago. Based on our new petrological, geochemical and geochronological measurements, we built a case that these ~750 Ma rocks also represent an Andean-type arc, coeval with and equivalent to the one present in Madagascar. By using similar types of approaches, we tracked this arc even further, into the Malani Igneous Province of Rajasthan, in northwest India. Our paleomagnetic data place these three entities adjacent to each other at ~750 Ma, and were positioned at the margins, rather than in the central parts of the Rodinia supercontinent, further supporting their formation in a subduction-related continental arc. A widespread view is that in the Neoproterozoic, Rodinia began to break apart, and the more familiar Gondwana supercontinent was assembled by Pan-African (~500 to 600 Ma) continental collisions, marked by the highly deformed and metamorphosed rocks of the East African Orogen. It was my mentor, Kevin Burke, who suggested that the present-day locations of Alkaline Rocks and Carbonatites (called “ARCs”) and their Deformed equivalents (called “DARCs”), might mark the outlines of two well-defined parts of the Wilson cycle. We can be confident that ARCs formed originally in intracontinental rift settings, and we postulated that DARCs represent suture zones, where vanished oceans have closed. We also found that the isotopic record of these events can be preserved in DARC minerals. In a nepheline syenite gneiss from Malawi, the U-Pb age of zircons is 730 Ma (marking the rifting of Rodinia), and that of monazites is 522 Ma (marking the collisional construction of Gondwana). A general outline of how and when Gondwana broke apart into the current configuration of continental entities, starting at about 165 Ma, has been known for some time, because this record is preserved in the magnetic properties of ocean-floor basalts, which can be precisely dated. A current topic of active research is the role that deep mantle plumes may have played in initiating, or assisting, continental fragmentation. I am part of a group of colleagues and students who are applying complementary datasets to understand how the Karoo (182 Ma), Etendeka (132 Ma), Marion (90 Ma) and Réunion (65 Ma) plumes influenced the break-up of Gondwana and the development of the Indian Ocean. Shortly after the impingement of the Karoo plume at 182 Ma, Gondwana fragmentation began as Madagascar + India + Antarctica separated from Africa, and drifted southward. Only after 90 Ma, when Madagascar was blanketed by lavas of the Marion plume, did India begin to rift, and rapidly drifted northward, assisted by the Marion and Deccan (65 Ma) plumes, eventually colliding with Asia to produce the Himalayas. It is interesting that a record of these plate kinematics is preserved in the large Permian – Eocene sedimentary basins of western Madagascar: transtensional pull-apart structures are dextral in Jurassic rocks (recording initial southward drift with respect to Africa), but change to sinistral in the Eocene, recording India’s northward drift. Our latest work has begun to reveal that small continental fragments are present in unexpected places. In the young (max. 9 Ma) plume-related, volcanic island of Mauritius, we found Precambrian zircons with ages between 660 and 3000 Ma, in beach sands and trachytic lavas. This can only mean that a fragment of ancient continent must exist beneath the young volcanoes there, and that the old zircons were picked up by ascending magmas on their way to surface eruption sites. We speculate, based on gravity inversion modelling, that continental fragments may also be present beneath the Nazareth, Saya de Malha and Chagos Banks, as well as the Maldives and Laccadives. These were once joined together in a microcontinent we called “Mauritia”, and became scattered across the Indian Ocean during Gondwana break-up, probably by mid-ocean ridge “jumps”. This work, widely reported in international news media, allows a more refined reconstruction of Gondwana, suggests that continental break-up is far more complex than previously perceived, and has important implications for regional geological correlations and exploration models. Our results, as interesting as they may be, are merely follow-ups that build upon the prescient and pioneering ideas of Alex Du Toit, whose legacy I appreciatively acknowledge.

2019 ◽  
Vol 157 (4) ◽  
pp. 690-694 ◽  
Author(s):  
W. Franke ◽  
L.R.M. Cocks ◽  
T.H. Torsvik

AbstractAnalysis of the distribution of detrital zircon grains is one of the few parameters by which Precambrian palaeogeography may be interpreted. However, the break-up of Pangea and the subsequent dispersal of some of its fragments around the Indian Ocean demonstrate that zircon analysis alone may be misleading, since zircons indicate their original derivation and not their subsequent plate-tectonic pathways. Based on analysis of Precambrian–Ordovician zircon distributions, the presence of microcontinents and separating oceans in the north Gondwanan realm has been rejected in favour of an undivided pre-Variscan continental northwards extension of Africa to include Iberia, Armorica and neighbouring southern European terranes, based on analysis of Precambrian–Ordovician zircon distribution. However, contrasting views, indicating the presence of three peri-Gondwanan oceans with complete Wilson cycles, are reinforced here by a critical reappraisal of the significance of that Variscan area detrital zircon record together with a comparison of the evolution of the present-day Indian Ocean, indicating that Iberia, Armorica and other terranes were each separate from the main Gondwanan craton during the early Palaeozoic Era.


Author(s):  
Abdul Sheriff

The general outline of Indian migration to East Africa is broadly understood, and there have been a number of detailed family histories of prominent people of Indian origin, which sometimes tend to freeze the image of Indians as a homogeneous and separate entity. The author decided to compile a history of his family which had lived in Zanzibar for five generations. He wanted to understand, within the context of much wider migrations and settlements across the Indian Ocean by all sorts of peoples, why and how they migrated, how they became not a ‘diaspora’ but an indigenized and part of a constantly evolving multicultural society, a perspective that is often lacking in the existing literature on the Indians overseas.


2009 ◽  
Vol 4 (2) ◽  
Author(s):  
Heather Goodall

Two events involving Indians in Australia have grabbed news headlines at different times. One was the 1945 campaign supporting Indonesian Independence in which Indian seamen – known then in Australia as “lascars” – played a high profile role for which they have seldom been acknowledged. The more recent has been the 2009 series of violent attacks on Indian students in Australia, which have aroused major news coverage and public debate in Australia and India. How might “news” media reflect better the potential of both these stories to tell transnational “Indian Ocean news” in which more than one narrative is heard? How, in fact, might they reflect the qualities of the Indian Ocean itself in fostering circulation and dialogue? To contribute to this wider question, this article explores two issues. Firstly, do cultural stereotypes persist over time and, if so, is it because news media re-create and re-circulate them in changing circumstances? Secondly, how does “access” to “making news” come about: whose voices are heard and how are “news” stories identified and told? In the light of what appears to be the simple perpetuation of old stereotypes into the 2009 stories, this paper examines both newspaper and documentary filmic representations of the 1945 campaign. It argues that the outcomes in each case involved selective, rather than wholesale, use of stereotypes. Moreover, each was the result of interaction and often contestation between the participants and the recorders of news – the “sources” and the “producers” – rather than complete dominance by Australian reporters or Western filmmakers over how the stories were told. The paper identifies the more effective of the 1945 strategies used by Indian actors and points to the ways such stories might be read as “Indian Ocean news” which makes visible not only each side of the story but the interactions themselves. This is no longer just a possible future scenario – digital media and internet communication mean that today’s stories are being read and watched almost simultaneously around the world by very different audiences. So working out what “Indian Ocean news” might be is now a matter of urgency.


Sign in / Sign up

Export Citation Format

Share Document